written 6.8 years ago by | modified 2.8 years ago by |
Subject : Structural Analysis 1
Topic :Hinge Arches
Difficulty : Medium
written 6.8 years ago by | modified 2.8 years ago by |
Subject : Structural Analysis 1
Topic :Hinge Arches
Difficulty : Medium
written 6.8 years ago by | • modified 6.6 years ago |
1) Support reaction ($rx^n$) calculation:
Step 1 Consider part (CA)
$BM_c = 0$
$V_A \times 6 - 30 \times 6 \times \frac{6}{2} - H \times 4 = 0$
$6V_A - 4H - 540 = 0$
$V_A = \frac{4H + 540}{6}$ -------- (1)
step 2 part (CB)
$BM_c = 0$
$V_B \times 10 - H \times 8 - 120 \times 3 - 220 \times 7 - 30 \times 10 \times \frac{10}{2} = 0$
$10V_B - 8H -360 - 1540 -1500 = 0$
$10V_B = 8H + 360 + 1540 + 1500$
$10V_B = 8H + 3400$
$V_B = \frac{8H + 3400}{10}$ ---------- (2)
Step 3
$\sum F_y = 0(\uparrow +ve)$
$V_A + V_B - 30 \times 16 - 120 - 220 = 0$
$V_A + V_B = 820$ --------- (3)
$\frac{4H+540}{6} + \frac{8H+3400}{10} = 820$
$\boxed{H = 265.90 KN}$
Put in equation (1)
$V_A = \frac{4H + 540}{6}$
$V_A = \frac{4 \times 265.90 + 540}{6}$
$\boxed{V_A = 267.27 KN}$
Put in equation (2) H = 265.90 KN
$V_B = \frac{8H + 3400}{10}$
$V_B = \frac{8 \times 265.90 + 3400}{10}$
$\boxed{V_B = 552.72 KN}$