1. Support $rx^{n}$:
$\sum M_A = 0 (\circlearrowright +ve)$
50 x 10 + (20 x 10) x 5 - $V_B$ x 20 = 0
20$V_B$ = 50 x 10 + 200 x 5
$\boxed{V_B = 75 KN}$
$\sum F_y = 0 (\uparrow +ve)$
$V_A$ - 50 - 200 + 75 = 0
$\boxed{V_A = 175 KN}$
C is an internal hing consider part (CB)
$B.M_c = 0$
75 x 10 - $H_B$ x H = 0
$H_B = \frac{750}{4} = 187.5 KN$
$\boxed{H_A = H_B = 187.5 KN}$
2. B.M @ $4 m$ from A
With A as origin {D is situated at $4m$ from A}
$y = \frac{4h}{l^{2}}(lx - x^2)$
$y = \frac{4 x 4}{20^2}(20 x 4 - 4^2)$
$\boxed{y = 2.56m}$
consider part DA
$B.M_D$
$B.M_D = 175 \times 4 - 187.5 \times 2.56 - 20 \times 4 \times \frac{4}{2}$
$B.M_D = 60 KN.m$
B.M @ $4m$ from A = 60 KN.m
3. N & F @ $4m$ from A
Net unbalance vertical shear at D
Consider part (DA) is
$175 \uparrow - 20 X 4 \downarrow$
= 95KN
$N_D = 187.5 cos\theta \swarrow + 95 sin\theta\swarrow$
$N_D = 187.5 cos (25.64) + 95 sin (25.64)$
$\boxed{N_D = 210.14 KN\swarrow}$
$F_D = 95 cos\theta\searrow - 187.5 sin\theta\nwarrow$
$F_D = 95 cos (25.64) - 187.5 sin (25.64)$
$\boxed{F_D = 4.51KN\searrow}$
To find $\theta$
$y = \frac{4h}{l^2} (lx - x^2)$
$y = \frac{4 X 4}{20^2} (20x - x^2)$
Diff w.r.t to x
$\frac{dy}{dx} = \frac{1}{25}[20-2x]$
$\frac{dy}{dx} = \frac{1}{25} (20 - 2(4)) AT x = 4m$
$tan\theta = 0.48$
$\theta = tan^{-1}(0.48)$
$\boxed{\theta = 25.64^\circ}$
4. Max +ve and -ve B.M
Take section x - x distance x from A.
Consider part [CA]:
$B.M_x = 175 \times x - 187.5 \times y - 20 x \frac{x}{2}$ ------------- (1)
We know that
$y = \frac{4h}{l^2}(lx - x^2)$
$y = \frac{4 X 4}{20^2} (20x - x^2)$
$y = \frac{1}{25}(20x - x^2)$
Put in equation (1) we get
$B.M_x = 175 \times x - 187.5 \times \frac{1}{25} (20x - x^2) - 10x^2$
$M_x$ to be maximum $\frac{d}{dx} M_x = 0$
$175 - \frac{187.5}{25}[20 - 2x] - 20x = 0$
$\boxed{x = 5m}$
Put x = 5 min $M_x$ equation
$M_x = 175 \times 5 - 187.5 \times \frac{1}{25} (20 \times 5 - 5^2) - 10 \times 5^2$
$\boxed{B.M_x = M_{max} = 62.5 KN.m}$
Max positive BM = 62.5 KN.m occuring at 5m from A span CA.
Consider part [CB]
$B.M_x = 75 \times x - 187.5 \times y$
$B.M_x = 75 \times x - 187.5 \times \frac{1}{25} (20x - x^2)$ ---------- (1)
$M_x$ to be max $\frac{d}{dx} M_x = 0$
$75 - \frac{187.5}{25} (20 - 2x) = 0$
$x = 5m$
Put x= 5m in equation (1)
$75 \times 5 - \frac{187.5}{25} (20 \times 5 - 5^2)$
$M_x = -187.5 KN.m$
Max negative $BM_x = -187.5 KN.m$ occuring at 5m from span CD.
5. B.M.D