(i) Number of nodes and elements
(ii) Potential energy of system with discrete element is given by
$ \pi = \frac{1}{2} \sum K_i \partial u_i^2 - \sum u_iP_i $ for the system shown.
$ \pi = \frac{1}{2} K_1 (u_2 - u_1)^2 + \frac{1}{2}K_2(u_3-u_2)^2 + \frac{1}{2}K_3(u_4-u_3)^2 + \frac{1}{2}K_4(u_5 - u_4)^2 - P_1u_1 - P_2u_2 - P_3u_3 - P_4u_4 - P_5u_5 $
(iii) For minimum potential energy , $ \frac{\partial \pi}{\partial u_i} = 0 $
For node 1: $ \frac{\partial \pi}{\partial u_1} = K_2(u_2-u_1) - P_1 = 0 $
For node 2: $ \frac{\partial \pi}{\partial u_2} = K_1(u_2-u_1)-K_2(u_3-u_2)-K_3(u_4-u_2)-P_2 = 0 $
For node 3: $ \frac{\partial \pi}{\partial u_3} = K_2(u_3-u_2)-P_3 = 0 $
For node 4: $ \frac{\partial \pi}{\partial u_4} = K_3(u_4-u_2)-K_4(u_5-u_4)-P_4 = 0 $
For node 5: $ \frac{\partial \pi}{\partial u_5} = K_4(u_5-u_4)-P_5 = 0 $
The equation can be rewritten as:
$ K_1u_1 - K_2u_2 = P_1 \\
-K_1u_1 + (K_1+K_2+K_3)u_2-K_2u_3-K_3u_4 = P_2 \\
-K_2u_2 + K_2u_3 = P_3 \\
-K_3u_2+(K_3+K_4)u_4-K_4u_5 = P_4 \\
-K_3u_2+K_5u_5=P_5 $
Now, substituting given values
$ K_1 = 100N/mm \hspace{0.5cm} P_2=0 \\
K_2=300N/mm \hspace{0.5cm} P_3=100kN \\
K_3=150N/mm \hspace{0.5cm} P_4=200kN \\
K_4=200 N/mm \hspace{0.5cm} u_1=0 \\
K_5=200 N/mm \hspace{0.5cm} u_5=0 $
Above equation becomes
$
-100u_2 = P_1 \hspace{0.5cm} ...(1) \\
550u_2-300u_3-150u_4=0 \hspace{0.5cm} ...(2) \\
-300u_2+300u_3=100 \hspace{0.5cm} ...(3) \\
-150u_2+350u_4=200 \hspace{0.5cm} ...(4) \\
-200u_4 = P_5 \hspace{0.5cm} ...(5)
$
By solving equation (2),(3) and (4), we get,
u$_2$ = 1 mm; u$_3$ = 1.333 mm; u$_4$ = 1 mm
Substituting above values in equation (1) and (5), we get,
P$_1$ = -100u$_2$ = -100 kN
P$_5$ = -200u$_4$ = -200 kN
Checking:
$ \sum P = P_1 + P_2 + P_3 + P_4 + P_5= -100 + 0 + 100 - 200 + 200 = 0 $
Solution verified.