0
3.2kviews
Determine the displacement at nodes by using the principal of minimum potential energy and Find the support reaction.

Determine the displacement at nodes by using the principal of minimum potential energy and Find the support reaction.

enter image description here

Use, $K_1 = 100 N/mm \hspace{1cm} K_2 = 300 N/mm$

$\hspace{0.8cm} K_3 = 150 N/mm \hspace{1cm}K_4 = 200 N/mm$


1 Answer
1
130views

(i) Number of nodes and elements

enter image description here

(ii) Potential energy of system with discrete element is given by $ \pi = \frac{1}{2} \sum K_i \partial u_i^2 - \sum u_iP_i $ for the system shown.

$ \pi = \frac{1}{2} K_1 (u_2 - u_1)^2 + \frac{1}{2}K_2(u_3-u_2)^2 + \frac{1}{2}K_3(u_4-u_3)^2 + \frac{1}{2}K_4(u_5 - u_4)^2 - P_1u_1 - P_2u_2 - P_3u_3 - P_4u_4 - P_5u_5 $

(iii) For minimum potential energy , $ \frac{\partial \pi}{\partial u_i} = 0 $

For node 1: $ \frac{\partial \pi}{\partial u_1} = K_2(u_2-u_1) - P_1 = 0 $

For node 2: $ \frac{\partial \pi}{\partial u_2} = K_1(u_2-u_1)-K_2(u_3-u_2)-K_3(u_4-u_2)-P_2 = 0 $

For node 3: $ \frac{\partial \pi}{\partial u_3} = K_2(u_3-u_2)-P_3 = 0 $

For node 4: $ \frac{\partial \pi}{\partial u_4} = K_3(u_4-u_2)-K_4(u_5-u_4)-P_4 = 0 $

For node 5: $ \frac{\partial \pi}{\partial u_5} = K_4(u_5-u_4)-P_5 = 0 $

The equation can be rewritten as:

$ K_1u_1 - K_2u_2 = P_1 \\ -K_1u_1 + (K_1+K_2+K_3)u_2-K_2u_3-K_3u_4 = P_2 \\ -K_2u_2 + K_2u_3 = P_3 \\ -K_3u_2+(K_3+K_4)u_4-K_4u_5 = P_4 \\ -K_3u_2+K_5u_5=P_5 $

Now, substituting given values

$ K_1 = 100N/mm \hspace{0.5cm} P_2=0 \\ K_2=300N/mm \hspace{0.5cm} P_3=100kN \\ K_3=150N/mm \hspace{0.5cm} P_4=200kN \\ K_4=200 N/mm \hspace{0.5cm} u_1=0 \\ K_5=200 N/mm \hspace{0.5cm} u_5=0 $

Above equation becomes

$ -100u_2 = P_1 \hspace{0.5cm} ...(1) \\ 550u_2-300u_3-150u_4=0 \hspace{0.5cm} ...(2) \\ -300u_2+300u_3=100 \hspace{0.5cm} ...(3) \\ -150u_2+350u_4=200 \hspace{0.5cm} ...(4) \\ -200u_4 = P_5 \hspace{0.5cm} ...(5) $

By solving equation (2),(3) and (4), we get,

u$_2$ = 1 mm; u$_3$ = 1.333 mm; u$_4$ = 1 mm

Substituting above values in equation (1) and (5), we get,

P$_1$ = -100u$_2$ = -100 kN

P$_5$ = -200u$_4$ = -200 kN

Checking:

$ \sum P = P_1 + P_2 + P_3 + P_4 + P_5= -100 + 0 + 100 - 200 + 200 = 0 $

Solution verified.

Please log in to add an answer.