Using one element for entire rod i.e. h$_e$ = l.
Using lumped mass matrix:
$$
\frac{AE}{h_e}
\begin{bmatrix}
1 & -1 \\
-1 & 1
\end{bmatrix}
\begin{Bmatrix}
u_1 \\
u_2
\end{Bmatrix}
=
\frac{\omega^2 \zeta Ah_e}{2}
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{Bmatrix}
u_1 \\
u_2
\end{Bmatrix}
$$
Since h$_e$ = l
$$
\frac{AE}{l}
\begin{bmatrix}
1 & -1 \\
-1 & 1
\end{bmatrix}
\begin{Bmatrix}
u_1 \\
u_2
\end{Bmatrix}
=
\omega^2 \zeta Al
\begin{bmatrix}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{bmatrix}
\begin{Bmatrix}
u_1 \\
u_2
\end{Bmatrix}
$$
Applying boundary condition, u$_1$ = 0
$$
\frac{AE}{l}
\begin{bmatrix}
1 & -1 \\
-1 & 1
\end{bmatrix}
\begin{Bmatrix}
0 \\
u_2
\end{Bmatrix}
=
\omega^2 \zeta Al
\begin{bmatrix}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{bmatrix}
\begin{Bmatrix}
0 \\
u_2
\end{Bmatrix}
$$
$ \therefore \frac{AE}{l} u_2 = \omega^2 \frac{\zeta Al}{2}u_2 \\
\omega^2 = \frac{2E}{\zeta l^2} \\
\therefore w = \sqrt{\frac{2E}{\zeta l^2}} = \frac{1.414}{l} \sqrt{\frac{E}{\zeta}}$
Using consistent mass matrix
$$
\frac{AE}{h_e}
\begin{bmatrix}
1 & -1 \\
-1 & 1
\end{bmatrix}
\begin{Bmatrix}
u_1 \\
u_2
\end{Bmatrix}
= \frac{w^2 \zeta Ah_e}{6}
\begin{bmatrix}
2 & 1 \\
1 & 2
\end{bmatrix}
\begin{Bmatrix}
u_1 \\
u_2
\end{Bmatrix}
$$
But, h$_e$ = l
$$
\frac{AE}{l}
\begin{bmatrix}
1 & -1 \\
-1 & 1
\end{bmatrix}
\begin{Bmatrix}
u_1 \\
u_2
\end{Bmatrix}
= \frac{w^2 \zeta Al}{6}
\begin{bmatrix}
2 & 1 \\
1 & 2
\end{bmatrix}
\begin{Bmatrix}
u_1 \\
u_2
\end{Bmatrix}
$$
Applying boundary condition, u$_1$ = 0
$$
\frac{AE}{l}
\begin{bmatrix}
1 & -1 \\
-1 & 1
\end{bmatrix}
\begin{Bmatrix}
0 \\
u_2
\end{Bmatrix}
=
\frac{\omega^2 \zeta Al}{6}
\begin{bmatrix}
2 & 1 \\
1 & 2
\end{bmatrix}
\begin{Bmatrix}
0 \\
u_2
\end{Bmatrix}
$$
$ \frac{AE}{l}u_2 = \frac{\omega^2 \zeta A l}{6} 2u_2 \\
\frac{E}{l} = \frac{\omega^2 \zeta l}{3} \\
\omega^2 = \frac{3E}{\zeta l^2} \\
\therefore \omega = \sqrt{\frac{3E}{\zeta}{l^2}} = \frac{1.732}{l} \sqrt{\frac{E}{\zeta}} $