written 6.8 years ago by | modified 2.5 years ago by |
Subject: Power System Analysis
Topic: Power System Transients
Difficulty: High
written 6.8 years ago by | modified 2.5 years ago by |
Subject: Power System Analysis
Topic: Power System Transients
Difficulty: High
written 2.5 years ago by |
The given data -
Voltage = $ V^{'} $ = 3000 kV
Protective Level = $ V_a $ = 1700 kV
Surge Impedance of Line = $ Z_c $ = 300 Ω
To find -
i] Line current before reaching the Arrester = $ I^{'} $ = ?
ii] Current through the Arrester = $ I_a $ = ?
iii] Value of the Arrester Resistance for this Condition = R = ?
iv] Reflect Voltage = $ V^n $ = ?
v] Verification of Reflection and Refraction Coefficients
Formulae -
$$ Line\ Current = I^{'} = \frac {V^{'}}{Z_c} $$
$$ Current\ through\ Arrester = I_a = \frac {2V^{'} - V_a}{Z_c} $$
$$ Resistance\ of\ Arrester = R = \frac {V_a}{I_a} $$
$$ Reflected\ Voltage = V^n = V_a - V^{'} $$
$$ Reflection\ Coefficient = \frac {V^n}{V{'}} = \frac {R - Z_c}{R + Z_c} $$
$$ Refraction\ Coefficient = \frac {V_a}{V{'}} = \frac {2R}{R + Z_c} $$
Solution -
i] Line current before reaching the Arrester = $ I^{'} $
$$ I^{'} = \frac {V^{'}}{Z_c} $$
$$ I^{'} = \frac {3000 \times 10^3}{300} = 10^4\ A $$
II] Current through the Arrester = $ I_a $
$$ Current\ through\ Arrester = I_a = \frac {2V^{'} - V_a}{Z_c} $$
$$ I_a = \frac {2 \times 3000 \times 10^3 - 1700 \times 10^3}{300} $$
$$ I_a = \frac {4300000}{300} $$
$$ I_a = 14333\ A $$
iii] Value of the Arrester Resistance for this Condition = R
$$ Resistance\ of\ Arrester = R = \frac {V_a}{I_a} $$
$$ R = \frac {1700 \times 10^3}{14333} = 118.61\ Ω $$
iv] Reflect Voltage = $ V^n $
$$ Reflected\ Voltage = V^n = V_a - V^{'} $$
$$ V^n = 1700 - 3000 = -1300\ kV $$
v] Verification of Reflection and Refraction Coefficients
$$ Reflection\ Coefficient = \frac {V^n}{V{'}} = \frac {R - Z_c}{R + Z_c} $$
$$ L.H.S. = \frac {V^n}{V{'}} = - \frac {1300}{3000} = - 0.4333 $$
$$ R.H.S. = \frac {R - Z_c}{R + Z_c} = \frac {118.61 - 300}{118.61 + 300} = -0.4333 $$
$$ L.H.S. = R.H.S.$$
Hence, Coefficient of Reflection is Verified.
$$ Refraction\ Coefficient = \frac {V_a}{V{'}} = \frac {2R}{R + Z_c} $$
$$ L.H.S. = \frac {V_a}{V{'}} = \frac {1700}{3000} = 0.567 $$
$$ R.H.S = \frac {2R}{R + Z_c} = \frac {2 \times 118.61}{118.61 + 300} = 0.567 $$
$$ L.H.S. = R.H.S.$$
Hence, Coefficient of Refraction is Verified.
Answer -
i] Line current before reaching the Arrester = $ I^{'} $ = $10^4\ A$
ii] Current through the Arrester = $ I_a $ = 14333 A
iii] Value of the Arrester Resistance for this Condition = R = 118.61 Ω
iv] Reflect Voltage = $ V^n $ = - 1300 kV
v] Reflection Coefficient = - 0.4333 is verified.
Refraction Coefficient = 0.567 is verified.