Surge Impedance Loading (SIL) Problem
The given data -
The Surge Magnitude = E = 100 kv
Natural Impedance = $Z_1$ = 600 Ω
Impedance at Line 1 = $Z_2$ = 800 Ω
Impedance at Line 2 = $Z_3$ = 200 Ω
To find -
a] Surge Voltage = $E^n$ = ?
b] Current Transmitted into each Branch Line $Z_2$ and $Z_3$ = ?
Formulae -
$$ Surge\ Voltage = E^n = \frac {\frac{2E}{Z_1}}{\frac {1}{Z_1} + \frac {1}{Z_2} + \frac {1}{Z_3}} $$
$$ Current\ Transmitted\ into\ Branch\ Line\ Z_2 = \frac {E^n \times (Z_2 + Z_3)}{Z_2} $$
$$ Current\ Transmitted\ into\ Branch\ Line\ Z_3 = \frac {E^n \times (Z_2 + Z_3)}{Z_3} $$
Solution -
a] Surge Voltage $E^n$ Calculation -
$$ E^n = \frac {\frac{2E}{Z_1}}{\frac {1}{Z_1} + \frac {1}{Z_2} + \frac {1}{Z_3}} $$
$$ E^n = \frac {\frac{2 \times 100}{600}}{\frac {1}{600} + \frac {1}{800} + \frac {1}{200}} $$
$$ E^n = \frac {0.3333}{7.9167 \times 10^{-3}} $$
$$ E^n = 42.1\ kV$$
b] Current Transmitted into each Branch Line $Z_2$ and $Z_3$
Therefore,
$$ Current\ Transmitted\ into\ Branch\ Line\ Z_2 = \frac {E^n \times (Z_2 + Z_3)}{Z_2} $$
$$ = \frac {42.1 \times (800 + 200)}{800} $$
$$ = \frac {42100}{800} $$
$$ = 52.625\ A $$
and
$$ Current\ Transmitted\ into\ Branch\ Line\ Z_3 = \frac {E^n \times (Z_2 + Z_3)}{Z_3} $$
$$ = \frac {42.1 \times (800 + 200)}{200} $$
$$ = \frac {42100}{200} $$
$$ = 210.5\ A $$
Answer -
a] Surge Voltage = $E^n$ = 42.1 kV
b] Current Transmitted into Branch Line and $Z_2$ = 52.625 A
Current Transmitted into Branch Line $Z_3$ = 210.5 A