written 9.1 years ago by |
Engineering Maths 1 - Jun 2013
First Year Engineering (C Cycle) (Semester 1)
TOTAL MARKS: 100
TOTAL TIME: 3 HOURS
(1) Question 1 is compulsory.
(2) Attempt any four from the remaining questions.
(3) Assume data wherever required.
(4) Figures to the right indicate full marks.
Choose your answer for the following :-
1 (a) (i) If y=35x then yn is
(A) (3 log 5)n e5x
(B) (5 log 3)n e5x
(C) (5 log 3)-n e5x
(D) (5 log 3)n e-5x(1 marks)
1 (a) (ii) if y=cos2 x then yn is
(A) 2n+1 cos(n?/2+2x)
(B) 2n-1 cos(n?/2+2x)
(C) 2n-1 cos(n?/2-2x)
(D) 22+1 cos(n?/2-2x)(1 marks)
1 (a) (iii) The Largrange's mean value theorem for the function f(x)=ex in the interval [0, 1] is
(A) C=0.5413
(B) C=2.3
(C) 0.3
(D) none of these(1 marks)
1 (a) (iv) Expression of log (1+ex) in powers of x is _____
(A) log2−x2+x28+x4192+....$$B) log2+x2+x28−x4192+....$$C) log2+x2+x28+x4192+....$$D) log2−x2−x28−x4192+....
Choose your answer for the following :-
2 (a) (i) The indeterminate form of limx→0ax−bxx is$$A) log(ba)$$B) log(ab)$$C) 1$$D) −1
(A) ?/2
(B) -?/2
(C) ?/2+?
(D) ?/2-?(1 marks)
2 (a) (iii) The polar form of a curve is _____
(A) r=f(?)
(B) ?=f(y)
(C) r=f(x)
(D) none of these(1 marks)
2 (a) (iv) The rate at which the curve is bending called _____
(A) Radius of curvature
(B) Curvature
(C) Circle of curvature
(D) Evaluate(1 marks)
2 (b) Evaluate limx→0(sinxx)1/x2
Choose your answer for the following :-
3 (a) (i) If u=x2+y2 then (∂2u)(∂x∂y)
(A) 2
(B) 0
(C) 2x
(D) 2y(1 marks)
3 (a) (ii) If z=f(x,y) where x=u-v and y=uv then (u+v) (∂z∂x) is
(A) u(∂z∂u)−v(∂z∂v)$$B) u(∂z∂u)+v( ∂z∂v)$$C) ∂z∂u+∂z∂v$$D) ∂z∂u−∂z∂v
(A) r
(B) 1/r
(C) 1
(D) -1(1 marks)
3 (a) (iv) In error and approximations ∂xx,∂yy,∂ff
(A) relative error
(B) percentage error
(C) error in x,y and f
(D) none of these(1 marks)
3 (b) If xx yy zz=c, show that \dfrac {\partial^2z}{\partial x \partial y}=-[x \log ex]^{-1}, when x=y=z(6 marks)
3 (c) Obtain the Jacobian of ∂(x.y.z)∂(r.θ.ϕ)
Choose your answer for the following :-
4 (a) (i) If R=xi+yj+zk then div R
(A) 0
(B) 3
(C) -3
(D) 2(1 marks)
4 (a) (ii) If F=3x2i-xyj+(a-3)xzk is solenoidal, then a is equal to
(A) 0
(B) -2
(C) 2
(D) 3(1 marks)
4 (a) (iii) If F=(x+y+1)i+j-(x+y)k then F. Curl F is _____
(A) 0
(B) x+y
(C) x+y+z
(D) x-y(1 marks)
4 (a) (iv) The scale factors for cylindrical coordinates system (? ? z) are given by
(A) (?, 1, 1)
(B) (1, ?, 1)
(C) (1, 1, ?)
(D) None of these(1 marks)
4 (b) Prove that curl A=g rad(div A)- ?2 A.(6 marks)
4 (c) Find the constant a, b, c such that the vector F=(x+y+az)i+(bx+2y-z)j+(x+cy+2z)k is irrotational(6 marks)
4 (d) Derive an expression for ? ? A in orthogonal curvilinear coordinates. Deduce ? ? A is rectangular coordinates.(4 marks)
Choose your answer for the following :-
5 (a) (i) The value of ∫∞0eαxdx
(A) 1/e
(B) -1/e
(C) 1/?
(D) -1/?(1 marks)
5 (a) (ii) The value of the integral ∫π/20sin7xdx is
(A) 35/16
(B) 16/35
(C) -16/35
(D) 18/35(1 marks)
5 (a) (iii) The volume generated by revolving the cardioid r=a(1+ cos ?) about the intial line is
(A) (3πa2)8$$B) (3πa3)8$$C) (2πa2)9$$D) None
(A) a212$$B) π12$$C) πa212$$D) none
(4 marks)
Choose your answer for the following :-
6 (a) (i) The general solution of the differential equation (dy/dx)=(y/x)+tan(y/x) is
(A) sin (y/x)=c
(B) sin (y/x)=cx
(C) cos (y/x)=cx
(D) cos (y/x)=c (1 marks)
6 (a) (ii) An integrating factor for ydx-xdy=0 is
(A) x/y
(B) y/x
(C) 1(x2y2)
(D) 1/(x2+y2)(1 marks)
6 (a) (iii) The differential equation satisfying the relation x=A cos (mt-?) is
(A) (dx/dt)=1-x2
(B) (d2x/dt2)=-?2x
(C) (d2x/dt2)=-m2x
(D) (dx/dt)=-m2x(1 marks)
6 (a) (iv) The orthogonal trajectories of the system given by r=a? is
(A) r2=ke?
(B) r=ke?
(C) r2 e-?2= k
(D) r2= k e-?2(1 marks)
6 (b) Solve (x cos (y/x)+y sin (y/x)) y- (y sin (y/x) -x cos (y/x)) x(dy/dx)=0(6 marks)
6 (c) Solve (1+y2)+(x-etan-1y )dy/dx=0(6 marks)
6 (d) Prove that the system parabola y2=4a(x+a) is self orthognal.(4 marks)
Choose your answer for the following :-
7 (a) (i) Find the rank of [3−12−624−312]
(A) 3
(B) 2
(C) 4
(D) 1(1 marks)
7 (a) (ii) The exact solution of the system of equation 10x+y+z=12, x+10y+z=12, x+y+10z=12 by inspection is equal to
(A) (-1, 1, 1)
(B) (1, 1, 1)
(C) (-1, -1, -1)
(D) None (1 marks)
7 (a) (iii) If the given system of linear equations in 'n' variables is consistent then the number of linearly independent-solution is given by
(A) n
(B) n-1
(C) r-n
(D) n-r(1 marks)
7 (a) (iv) The trivial solution for the given system of equations
qx-y+4z=0, 4x-2y+3z=0, 5x+y-6z=0 is
(A) (1, 2, 0)
(B) (0 4 1)
(C) (0 0 0)
(D) (1 -5 0)(1 marks)
7 (b) Using elementary transformation reduce each of following matrices to the normal form [11161−12531182−237]
Choose your answer for the following :-
8 (a) (i) A square matrix A is called orthogonal if,
(A) A=A2
(B) A=A-1
(C) AA-1=1
(D) None (1 marks)
8 (a) (ii) The eigen values of the matrix [6−22−23−12−13] are
(A) 2,3,8
(B) 2,3,9
(C) 2,2,8
(D) None (1 marks)
8 (a) (iii) The eigen vector X of the matrix A corresponding to eigen value ? and satisfy the equation.
(A) AX=?X
(B) ?(A-X)=0
(C) XA-A? =0
(D) |A-?|X=0(1 marks)
8 (a) (iv) Two square matrices A and B are similar if,
(A) A=B
(B) B=P-1AP
(C) A'=B'
(D) A-1=B-1(1 marks)
8 (b) Show that the transformation, y1=2x1-2x2-x3, y2= -4x1+5x2+3x3, y3=x1-x2-x3, is regular and find the inverse transformations.(6 marks)
8 (c) Diagonalize the matrix, [8−62−67−42−43]