0
1.9kviews
Determine i) The Jacobian for (x,y)(ζ/eta) transformation ii) The strain displacement relation iii) The strams iv) The element stresses

A constant strain triangle element has the nodal co-ordinates (1, 2), (4, 0.5) and (3,4) for i, j and k nodes respectively. The elements is 2mm thick and is of matrial with properties E = 70 GPa and Poisson's ratio 0.3 upon loading of model, the nodal deflections found to be:

ui=100μmuj=75μmμk=80μm

vi=50μmvj=40μmvk=45μm

Determine

i) The Jacobian for (x,y)(ζ/eta) transformation

ii) The strain displacement relation

iii) The strams

iv) The element stresses


1 Answer
0
40views

enter image description here

(x1,y1)=(1,2)
(x2,y2)=(4,0.5)
(x3,y3)=(3,4)

u1=100μm=0.1mm
u2=75μm=0.075mm
u3=80μm=0.8mm

v1=50μm=0.05mm
v2=40μm=0.04mm
v3=45μm=0.045mm

a) Jacobian matrix
[J]=[(x2x1)(y2y1)(x3x1)(y3y1)]
=[(41)(0.52)(31)(42)]
=[31.522]

b)Strain displacement relation
{exeyδxy}=12A[β10β20β300γ10γ20γ3γ1beta1γ2β2γ3β3]{u1v1u2v2u3v3}

β1=y2y3=3.5
β2=y3y1=2
β3=y1y2=1.5

γ1=(x2x3)=1
γ2=(x3x1)=2
γ3=(x1x2)=3

2A=|1x1y11x2y21x3y3| =|112140.5134|
=1(161.5)1(40.5)+2(34)
2A=9.5

{exeyδxy}=19.5[3.50201.5001020313.52231.5]{0.10.050.0750.040.080.045}

c) The Strains.
ex=8.421103
ey=5.2631104
δxy=1.842103

d) The elemental stress
[δ]=[D]{e}
D=E1v2[1v0v10001v2]

E=70GPa=0.7105N/mm2,v=0.09

[D]=0.710510.32[10.300.3100010.32]

[D]=103[76.9223.077023.07776.9200026.92]

{σxσyτxy}=103[76.9223.077023.07776.9200026.92]{8.421035.261041.842103}

σx=659.80N/mm2
σy=234.768N/mm2
τxy=49.586N/mm2

Please log in to add an answer.