0
1.5kviews
Engineering Maths 1 : Question Paper Jan 2014 - First Year Engineering (C Cycle) (Semester 1) | Visveswaraya Technological University (VTU)
1 Answer
0
2views

Engineering Maths 1 - Jan 2014

First Year Engineering (C Cycle) (Semester 1)

TOTAL MARKS: 100
TOTAL TIME: 3 HOURS
(1) Question 1 is compulsory.
(2) Attempt any four from the remaining questions.
(3) Assume data wherever required.
(4) Figures to the right indicate full marks.


Choose the correct answer for the following:-

1 (a) (i) \if y=x+2x+, then]yn is$$A) (1)n(n+1)!(x1)n1$$B) (1)nn!(x+1)n+1$$C) (1)nn!(x+1)n$$D) (1)n1n!(x+1)n+1

(1 marks) 1 (a) (ii) If y=(ax+b)m with m=n, then yn is
(A) n! an
(B) 0
(C) n! bn
(C) n!
(1 marks)
1 (a) (iii) The geometrical intepretation of Lagrange's mean value theorem is
(A) f(C)=f(b)f(a)ba$$B) f(C)=f(b)+f(a)ba$$C) f(C)g(C)=f(b)f(a)g(b)g(a)$$D) none of these
(1 marks)
1 (a) (iv) The Maclaurin's series expansion of e-x is
(A) 1+x+x22!+x33!.....$$B) 1x+x22!x33!+.....$$C) xx22!+x33!.....$$D) x+x22!+x33!+.....
\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt1 (b)\lt/b\gt If y= sin log (x\ltsup\gt2\lt/sup\gt+2x+1), prove that (x+1)\ltsup\gt2\lt/sup\gt y\ltsub\gtn+2\lt/sub\gt+(2n+1)(x+1)y\ltsub\gtn\lt/sub\gt+(n\ltsup\gt2\lt/sup\gt+4)y\ltsub\gtn\lt/sub\gt=0\lt/span\gt\ltspan class='paper-ques-marks'\gt(4 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt1 (c) \lt/b\gt If x is positive, show that x>log(1+x)>x12X2
\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt1 (d)\lt/b\gt Using Maclourin's series, expand log (1+e\ltsup\gtx\lt/sup\gt) upto the terms containing x\ltsup\gt4\lt/sup\gt.\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt -------------- \ltspan class='paper-comments'\gt ### Choose the correct answer for the following :- \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt2 (a) (i)\lt/b\gt limxπ4(1tanxπ4x) is equal to
\ltbr\gt (A) 2 \ltbr\gt (B) -2 \ltbr\gt (C) 1 \ltbr\gt (D) -1\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt2 (a) (ii)\lt/b\gt If ? be the angle between the tangent and radius vector at any point on the curve r=f(?), then sin ? is equal to \ltbr\gt (A) dr/ds$$B) rdθds$$C) rdθdr$$D) ds/dr
\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt2 (a) (iii)\lt/b\gt The rate at which the curve is bending called \ltbr\gt (A) radius of curvature \ltbr\gt (B) curvature \ltbr\gt (C) circle of curvature \ltbr\gt (D) evolute\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt2 (a) (iv)\lt/b\gt The radius of curvature for polar curve r=f(?) is given by \ltbr\gt (A) (r2+r21)3/2r2+r21rr2$$B) (r2+r21)3/2r21+2r2rr2$$C) (r2+r21)3/2r2+2r21rr2$$D) (r2r21)3/2r2+2r21rr2
\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt2 (b)\lt/b\gt Find the Pedal equation of the curve r\ltsup\gtm\lt/sup\gt=a\ltsup\gtm\lt/sup\gt cos m?\lt/span\gt\ltspan class='paper-ques-marks'\gt(4 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt2 (c) \lt/b\gt Find the radius of curvature for the curve y2=a2(ax)x
where the curve meets the x-axis. \lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt2 (d)\lt/b\gt Evaluate limx(ax+1ax1)x
\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt -------------- \ltspan class='paper-comments'\gt ### Choose the correct answer for the following :- \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt3 (a) (i)\lt/b\gt If u=log(x2+y2+z2), then uz is$$A) 2xx2+y2+z3$$B) 2yx2+y2+z2$$C) 2zx2+y2+z2$$D) 2zx2+y2z2
\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt3 (a) (ii)\lt/b\gt If u=f(x, y) and y is a function x, then \ltbr\gt (A) dudx=ux+uydydx$$B) ux=dudx+uydydx$$C) dudx=ux+uyyx$$D) ux=dudx+uyyx
\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt3 (a) (iii)\lt/b\gt if r=2fx2, S=2fxy and t=2fy2
then the condition for the saddle point is \ltbr\gt (A) rt-s\ltsup\gt2\lt/sup\gt<0 \ltbr\gt (B) rt-s\ltsup\gt2\lt/sup\gt=0 \ltbr\gt (C) rt-s\ltsup\gt2\lt/sup\gt>0 \ltbr\gt (D) rt-s\ltsup\gt2\lt/sup\gt ? 0\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt3 (a) (iv)\lt/b\gt If u=x+y+z, v=y+z, z=z, then J(u,v,zx,y,z)
is equal to \ltbr\gt (A) 1 \ltbr\gt (B) -1 \ltbr\gt (C) 0 \ltbr\gt (D) none of these\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt3 (b)\lt/b\gt The focal length of a mirror is given by the formula 1v1u=2f
if equal errors, 'e' are made in the determination of u and v. show that the resulting error in f is e(1u+1v)
\lt/span\gt\ltspan class='paper-ques-marks'\gt(4 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt3 (c) \lt/b\gt If u=f(2x-3y, 3y-4z, 4z-2x), prove that 12ux+13uy+14uz=0
\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt3 (d)\lt/b\gt If x=u(1-v), y=uv, prove that JJ'=1\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt -------------- \ltspan class='paper-comments'\gt ### Choose the correct answer for the following :- \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt4 (a) (i)\lt/b\gt Directional derivative is maximum along \ltbr\gt (A) tangent to the surface \ltbr\gt (B) normal to the surface \ltbr\gt (C) any unit vector \ltbr\gt (D) coordinate axes\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt4 (a) (ii)\lt/b\gt If r=|x\ltsub\gti\lt/sub\gt+y\ltsub\gtj\lt/sub\gt+2\ltsub\gtk\lt/sub\gt|, then ? r\ltsup\gtn\lt/sup\gt is \ltbr\gt (A) nr\ltsup\gtn-1\lt/sup\gt \ltbr\gt (B) r\ltsup\gtn-1\lt/sup\gt \ltbr\gt (C) ?.? r\ltsup\gtn\lt/sup\gt \ltbr\gt (D) none of these\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt4 (a) (iii)\lt/b\gt If f=3x\ltsup\gt2\lt/sup\gt-3y\ltsup\gt2\lt/sup\gt+4z\ltsup\gt2\lt/sup\gt, then curl (grad f) is \ltbr\gt (A) 4x-6y+8z \ltbr\gt (B) 4x\ltsub\gti\lt/sub\gt-6y\ltsub\gtj\lt/sub\gt+8z k \ltbr\gt 0
\ltbr\gt (D) 3\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt4 (a) (iv)\lt/b\gt If the base vectors e\ltsub\gt1\lt/sub\gt and e\ltsub\gt2\lt/sub\gt are orthogonal then |e\ltsub\gt1\lt/sub\gt × e\ltsub\gt2\lt/sub\gt| is \ltbr\gt (A) 0 \ltbr\gt (B) -1 \ltbr\gt (C) +1 \ltbr\gt (D) none of these\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt4 (b)\lt/b\gt If F=(x+y+1)i+j(x+y)k, show that Fcurl F=0
\lt/span\gt\ltspan class='paper-ques-marks'\gt(4 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt4 (c) \lt/b\gt Find constant 'a' and 'b' such that F=(axy+z3)i+(3x2z)j+(bxz2y)k
is irrotational. Also find a scalar function ? such that F=ablaϕ
\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt4 (d)\lt/b\gt Prove that a spherical coordinate system is orthogonal.\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt -------------- \ltspan class='paper-comments'\gt ### Choose the correct answer for the following :- \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt5 (a) (i) \lt/b\gt π0sin7x dx is equal to$$A) zero$$B) 32π35$$C) 3235$$D) =35π32
\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt5 (a) (ii)\lt/b\gt The asymptote of (2-x)y\ltsup\gt2\lt/sup\gt=x\ltsup\gt3\lt/sup\gt is \ltbr\gt (A) x=2 \ltbr\gt (B) y-axis \ltbr\gt (C) x-axis \ltbr\gt (D) none of these\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt5 (a) (iii)\lt/b\gt The area of the cordioid r=a(1- cos ?) is \ltbr\gt (A) 3πa22$$B) 3π2$$C) a22$$D) 3a22
\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt5 (a) (iv)\lt/b\gt The entire length of the asteroid x\ltsup\gt2/3\lt/sup\gt+y\ltsup\gt2/3\lt/sup\gt=a\ltsup\gt2/3\lt/sup\gt is \ltbr\gt (A) 6a \ltbr\gt (B) 3a \ltbr\gt (C) 2a \ltbr\gt (D) a\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt5 (b)\lt/b\gt Evaluate π0log(1+acosx)dx
by differentiating under the integral sign.\lt/span\gt\ltspan class='paper-ques-marks'\gt(4 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt5 (c) \lt/b\gt Evaluate 2a0X22axx2dx
using reduction formula.\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt5 (d)\lt/b\gt Find the volume of generated by the revolution of the curve r=a(1+cos ?) about the initial line.\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt -------------- \ltspan class='paper-comments'\gt ### Choose the correct answer for the following :- \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt6 (a) (i)\lt/b\gt The general solution of the differential equation dy/dx=(y/x)+tan (y/x) is \ltbr\gt (A) sin (y/x)=c \ltbr\gt (B) sin (y/x)=cx \ltbr\gt (C) cos(y/x)=cx \ltbr\gt (D) cos (y/x)=c\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt6 (a) (ii)\lt/b\gt The family of straight lines passing through the origin is represented by the differential equation : \ltbr\gt (A) ydx+xdy=0 \ltbr\gt (B) xdy-ydx=0 \ltbr\gt (C) xdx+ydy=0 \ltbr\gt (D) ydy-xdx=0\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt6 (a) (iii)\lt/b\gt The homogeneous differential equation Mdx+Ndy=0 can be reduced to a differential equation, in which the variables are seperated by the substitution \ltbr\gt (A) y=vx \ltbr\gt (B) x+y=v \ltbr\gt (C) xy=v \ltbr\gt (D) x-y=v\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt6 (a) (iv)\lt/b\gt The equation y-2x=c represents the orthogonal trajectories family \ltbr\gt (A) y=ae\ltsup\gt-2x\lt/sup\gt \ltbr\gt (B) x\ltsup\gt2\lt/sup\gt+2y\ltsup\gt2\lt/sup\gt=a \ltbr\gt (C) xy=a \ltbr\gt (D) x+2y=a\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt6 (b)\lt/b\gt Solve (x+1)dydxy=e3x(x+1)2
\lt/span\gt\ltspan class='paper-ques-marks'\gt(4 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt6 (c) \lt/b\gt Solve (1+xy) ydx+(1-xy)xdy=0\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt6 (d) \lt/b\gt Find the orthogonal trajectory of the cordioids r=a(1- cos ?)\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt -------------- \ltspan class='paper-comments'\gt ### Choose the correct answer for the following :- \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt7 (a) (i)\lt/b\gt If every minor of order 'r' of a matrix A is zero, then rank of A is \ltbr\gt (A) greater than r \ltbr\gt (B) equal r \ltbr\gt (C) less than or equal to r \ltbr\gt (D) less\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt7 (a) (ii)\lt/b\gt The trivial solution for the given system of equations x+2y+3z=0, 3x+4y+4z=0, 7x+10y+12z=0 is \ltbr\gt (A) (1, 1, 1) \ltbr\gt (B) (1, 0, 0) \ltbr\gt (C) (0, 1, 0) \ltbr\gt (D) (0, 0, 0)\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt7 (a) (iii)\lt/b\gt Matrix has a value. This statement \ltbr\gt (A) is always true \ltbr\gt (B) depends upon the matrices \ltbr\gt (C) is false \ltbr\gt (D) none of these\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt7 (a) (iv)\lt/b\gt If A is singular and ?(A)=?(A:B) then the system has \ltbr\gt (A) unique solution \ltbr\gt (B) infinitely many solution \ltbr\gt (C) trivial solution \ltbr\gt (D) no solution.\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt7 (b)\lt/b\gt Using elementary transformations, find the rank of the matrix [1201 3412 2325]
\lt/span\gt\ltspan class='paper-ques-marks'\gt(4 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt7 (c) \lt/b\gt Show that the system x+y+z=4; 2x+y-z=1; x-y+2z=2 is consistent, solve the system.\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt7 (d)\lt/b\gt Apply Gauss-Jordan method to solve the system of equation: 2x+5y+7z=52; 2x+y-z=0; x+y+z=9\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt -------------- \ltspan class='paper-comments'\gt ### Choose the correct answer for the following :- \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt8 (a) (i)\lt/b\gt A square matrix A is called orthogonal if, \ltbr\gt (A) A=A\ltsup\gtL\lt/sup\gt \ltbr\gt (B) A\ltsup\gtT\lt/sup\gt=A\ltsup\gt-1\lt/sup\gt \ltbr\gt (C) AA\ltsup\gt-1\lt/sup\gt=I \ltbr\gt (D) none of these\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt8 (a) (ii)\lt/b\gt The eigen values of the matrix [22 22] are$$A) 1±6$$B) 1±5$$C) 5$$D) 1
\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt8 (a) (iii)\lt/b\gt The index and signature of the quadratic form x21+2X223X23
are respectively \ltbr\gt (A) 2,1 \ltbr\gt (B) 1,2 \ltbr\gt (C) 1,1 \ltbr\gt (D) none of these\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt8 (a) (iv)\lt/b\gt Two square matrices A and B are similar, if \ltbr\gt (A) A=B \ltbr\gt (B) B=P\ltsup\gt-1\lt/sup\gtAP \ltbr\gt (C) A\ltsup\gtT\lt/sup\gt=B\ltsup\gtT\lt/sup\gt \ltbr\gt (D) A\ltsup\gt-1\lt/sup\gt=B\ltsup\gt-1\lt/sup\gt\lt/span\gt\ltspan class='paper-ques-marks'\gt(1 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt8 (b)\lt/b\gt Reduce the quadratic form 8x\ltsup\gt2\lt/sup\gt+7y\ltsup\gt2\lt/sup\gt+3z\ltsup\gt2\lt/sup\gt-12yz+4zx-8xy to the canonical form\lt/span\gt\ltspan class='paper-ques-marks'\gt(4 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt8 (c) \lt/b\gt Determine the characteristics roots and eigen vectors of A=[862 674 243]
\lt/span\gt\ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \lt/span\gt\ltspan class='paper-question'\gt\ltspan class='paper-ques-desc'\gt\ltb\gt8 (d)\lt/b\gt Reduce the quadratic form x21+2x227x234x1x2+8x2x3
into sum of squares.
(6 marks)

Please log in to add an answer.