0
4.6kviews
Derive the shape function in natural co-ordinate system for eight nodded quadrilateral element.
1 Answer
0
387views

Serendipity elements:
They are the rectangulars element which have no interior nodes i.e all nodes lie on the boundary of element only.

enter image description here

Shape Function for eight noded element.
Considder a quadrilateral element with eight node as shown in Fig.

Now to determine $\phi_1$ we note that $\phi_1$ vanishes along lines.
i) 2-3 i.e $1-\xi=0$
ii) 3-4 i.e $1-\eta=0$
iii) 8-5 i.e $\,\,-\xi-\eta=1$ or $1+\xi+\eta=0$

Let, $\phi_1=A(1-\xi)(1-\eta)(1+\xi+\eta)$
At node 1 $\phi_1=1\,\,\,\,\xi_1=-1\,\,\,\,\eta=-1$

$\therefore 1=A(1+1)(1+1)(1-1-1)$
$\therefore 1=-4A$
$\therefore \,\,A=\frac{-1}{4}$

$\therefore \,\,\phi_1=\frac{-1}{4}(1-\xi)(1-\eta)(1+\xi+\eta)$

Similarly,
$\phi_2=\frac{-1}{4}(1+\xi)(1-\eta)(1-\xi+\eta)$
$\phi_3=\frac{-1}{4}(1+\xi)(1+\eta)(1-\xi-\eta)$
$\phi_4=\frac{-1}{4}(1-\xi)(1+\eta)(1+\xi-\eta)$

To find node $\phi_5,\,\,\phi_5\,$ vanishes along
i) 2-3 i.e $\,\,1-\xi=0$
ii) 3-4 i.e $\,\,1-\eta=0$
iii) 4-1 i.e $\,\,1+\xi=0$

Let, $\phi_5=A(1-\xi)(1-\eta)(1+\xi)$

At node 5 $\phi_5=1\,\,\,\xi=0\,\,\,\eta=-1$
$\therefore 1=A(1)(1+1)(1)$
$\therefore A=\frac{1}{2}$

$\therefore \phi_5=\frac{1}{2}(1-\xi^2)(1-\eta)$

Similarly,
$\phi_6=\frac{1}{2}(1+\xi)(1-\eta^2) $
$\phi_7=\frac{1}{2}(1-\xi^2)(1+\eta) $
$\phi_8=\frac{1}{2}(1-\xi)(1-\eta^2) $

Please log in to add an answer.