written 6.8 years ago by | modified 2.8 years ago by |
Subject: Design and Drawing of Steel Structure
Topic: Plate Girder
Difficulty: Medium
written 6.8 years ago by | modified 2.8 years ago by |
Subject: Design and Drawing of Steel Structure
Topic: Plate Girder
Difficulty: Medium
written 6.4 years ago by |
Given,
L = 25m, w = 60 kN/m including self-weight
To know, Design of welded plate girder.
1) Load calculation
Total factored load on girder = 60 kN/m
Maximum bending moment = $\frac{60 \times 25^2}{8}$ = 4687.5 kN.m
Maximum shear force = $ \frac{60 \times 25}{2} $ = 750 kN
2) Design of web
Section classification
Serviceability requirements
$ \frac{d}{t \omega} \leq 200 \varepsilon $
flange buckling requirements, $ \frac{d}{t \omega} \leq 345 \varepsilon f^2 $
Assume $ K = \frac{d}{t \omega} $ = web slenderness ratio = 180
Depth of plate girder = d = $ (\frac{M_zK}{Fy})^{0.33} = (\frac{4687.5\times 10^6 \times 180}{250})^{0.33} = 1394.2 \approx 1400 mm $
Therefore, thickness of web = tw = $ (\frac{M_z}{FyK^2})^{0.33} = (\frac{4687.5 \times 10^6}{250 \times 180^2})^{0.33} = 8.15 \approx 10mm $
As intermediate transverse stiffeners are not provided therefore increase the thickness of web.
Therefore, let us try web plate 1400x10 mm in size.
3) Design of flanges:
Assume that flanges carry the bending moment and shear by web
Area of flange AP = $ \frac{M_z rm_0}{Fyd} = \frac{4687.5 \times 10^6 \times 1.1}{250 \times 1400} = 14732.14 mm^2 $
Assume width of flange plate = 0.3d = 0.3x1400 = 420mm
Thickness of flange = $ \frac{14732.14}{420} $ = 35.097 $\approx$ 40mm
Let us try flange plate 420x40mm in size.
4) Classification of flanges
Out-stand of flange, b = $ \frac{bf - tw}{2} = \frac{400-10}{2} = 195mm $
$ \frac{b}{tf} = \frac{195}{40} = 4.875 \lt 8.4 $
Therefore, flanges are plastic.
5) Shear capacity: v \leq vd
$ vd = \frac{v_n}{rm_0} $
Nominal plastic shear resistance, $ v_n = v_p = \frac{A_vfy \omega}{\sqrt{3}} $
For welded section, $A_v = dt \omega$
$ v_n = \frac{dt \omega Fy\omega}{\sqrt{3} \times 1.1} = \frac{1400 \times 10 \times 250}{\sqrt{3} \times 1.1} = 1837.02 kN \gt 750 kN $
Therefore, safe in shear
6) Moment capacity of flanges:
$ v = 750 kN \lt 0.6 vd = 0.6 \times 1837.02 = 1102.2 kN \\ $
Therefore, Case is low shear
$ M_d = \frac{BbZ_{pz} Fy}{rm_0} $
Bb = 1 for plastic section.
$ Z_{pz} = \frac{A}{2} (\bar{y_1} + \bar{y_2}) \\ = \frac{2bFtF}{2} (D - \lambda F) \\ = \frac{2 \times 420 \times 40}{2}(1480 - 40) \hspace{0.5cm} [D = 1400 + 2 \times 40 = 1480mm] \\ = 24.19 \times 10^6 mm^3 $
$ Md = \frac{1 \times 24.19 \times 10^6 \times 250}{1.1} = 5498.18 kN.m \gt 4687.5 kN.m $
Therefore, safe.
7) Shear buckling design by simple post-critical method
$\tau$ = Elastic critical shear stress of the web
$ \tau = \frac{K_v \pi^2 E}{12(1-\mu^2)}(\frac{t \omega}{d})^2 $
$K_v$ = 5.35, when stiffeners (transverse) are provided only at supports.
$\mu$ = 0.3
$ \tau = \frac{5.35 \times \pi^2 \times 2 \times 10^5}{12(1-0.3^2)} (\frac{10}{1400})^2 = 49.34 N/mm^2 $
Non-dimensional web slenderness ratio for shear buckling stress.
$ \lambda_\omega = \sqrt{\frac{Fy \omega}{\sqrt{3} \tau}} \\ = \sqrt{\frac{250}{\sqrt{3} \times 49.34}} = 1.73 \gt 1.2 $
Therefore shear stress corresponding to buckling (when $ \lambda_\omega \gt 1.2 $)
$ \tau b = \frac{Fy \omega}{\sqrt{3} \lambda_\omega^2} \\ = \frac{250}{\sqrt{3} \times 1.71^2} = 19.36 N/mm^2 $
Shear force corresponding to web buckling
$ v_{cr} = A_v \tau b \\ = d \times t\omega \times \tau b \\ = 1400 \times 10 \times 49.36 \\ = 691 kN \lt 750 kN $
This is unsafe.
Therefore, revised the web thickness
Let us try 12mm thickness for web.
$ \tau_{cr} = \frac{5.35 \times \pi^2 \times 2 \times 10^5}{12(1-0.3^2)}(\frac{12}{1400})^2 = 71.05 N/mm^2 $
$ \lambda_\omega = \sqrt{\frac{Fy \omega}{\sqrt{3} \tau}} \\ = \sqrt{\frac{250}{\sqrt{3} \times 73.05}} = 1.42 \gt 1.2 $
$ \tau b = \frac{Fy \omega}{\sqrt{3} \lambda_\omega^2} \\ = \frac{250}{\sqrt{3} \times 1.42^2} = 71.58 N/mm^2 $
$ v_{cr} = A_v \tau b \\ = d \times t\omega \times \tau b \\ = 1400 \times 12 \times 71.58 \\ = 1202.54 kN \gt 750 kN $
This is safe.
8) Flange to web connection
There will be two weld lengths along the span for each flange to web connection
$\omega$ = Horizontal shear between flange to web
= $\frac{VAFbar{y}}{2 I_z}$
$ I_z = \frac{bf D^3}{12} - \frac{(bF - t\omega)d^3}{12} \\ = \frac{420 \times 1480^3}{12} - \frac{(420-12)1400^3}{12} \\ = 20166.72 \times 10^{10} mm^4 $
$ \bar{y} = \frac{D}{2} = \frac{1480}{2} = 740mm $
AF = bFxtF = 420x40 = 16800 mm$^2$
$ \omega = \frac{750 \times 16800 \times 740}{2 \times 20166.72 \times 10^6} = 0.231 kN/mm $
Provide size of weld = 7mm
$K_s$ = 0.7x7 = 4.9mm
Strength of weld per unit length
$ F_{wd} = \frac{4.9 \times 250}{\sqrt{3} \times 1.50} = 0.471 kN/mm \gt 0.231 kN/mm $
Therefore Safe.