0
1.1kviews
Derive the shape functions for ID quadratic element in natural co-ordinate.
1 Answer
written 7.0 years ago by | • modified 6.9 years ago |
Let,ϕ=Aξ(ξ−1)(ξ+1)
At node 1, (ξ+1)vanishes,
∴ϕ1=Aξ(ξ−1)
Now, ϕ1=1ξ=−1
∴1=A(−1)(−1−1)
∴A=12
∴ϕ1=12ξ(ξ−1)
At node 2, (ξ−1)vanishes,
∴ϕ2=Aξ(ξ+1)
Now, ϕ2=1ξ=1
∴1=A(1)(1+1)
∴A=12
∴ϕ2=12ξ(ξ+1)
At node 3, ξvanishes,
∴ϕ3=A(ξ+1)(ξ−1)
Now, ϕ3=1ξ=0
∴1=A(−1)(1)
∴A=−1
∴ϕ3=−1(ξ−1)(ξ+1)=(1−ξ)(1+ξ)