0
1.1kviews
Derive the shape functions for ID quadratic element in natural co-ordinate.
1 Answer
0
1views

enter image description here

Let,ϕ=Aξ(ξ1)(ξ+1)

At node 1, (ξ+1)vanishes,
ϕ1=Aξ(ξ1)
Now, ϕ1=1ξ=1
1=A(1)(11)
A=12

ϕ1=12ξ(ξ1)

At node 2, (ξ1)vanishes,
ϕ2=Aξ(ξ+1)
Now, ϕ2=1ξ=1
1=A(1)(1+1)
A=12

ϕ2=12ξ(ξ+1)

At node 3, ξvanishes,
ϕ3=A(ξ+1)(ξ1)
Now, ϕ3=1ξ=0
1=A(1)(1)
A=1

ϕ3=1(ξ1)(ξ+1)=(1ξ)(1+ξ)

Please log in to add an answer.