0
11kviews
Assuming the depth of plate girder restricted to 1500 mm and NO intermediate stiffeners are provided design

Subject: Design and Drawing of Steel Structure

Topic: Plate Girder

Difficulty: Medium

A simply supported welded plate girder of span 12 m is subjected to DL of 20 KN/m and LL of 20KN/m excluding self -weight, its also subjected to two point load of 600 KN at 4m from each support, the depth of plate girder is laterally supported throughout. Assuming the depth of plate girder restricted to 1500 mm and NO intermediate stiffeners are provided design,

i)Design, give relevant check and draw cross section of plate girder

ii)Design end stiffeners

1 Answer
2
205views

Given:

L = 12 m, DL = 20 kN/m (excluding self wt), LL = 20 kN/m, 2 point load of 600 kN at 4m from each support, D = 1500mm restricted.

To know: Design of welded plate girder with end bearing stiffeners.

1) Load calculations:

Assume self wt of girder/m = $ \frac{Total \,\, load}{300} = \frac{(20+20) \times 12 + 2 \times 600}{300} = 5.6 $ kN/m

Total UDL = 20+20+5.6 = 45.6 kN/m

Fractured load, UDL/m = 45.6 x 1.5 = 68.4 kN/m

Point load = 1.5 x 600 = 900 kN

enter image description here

Maximum shear force = 1310.4 kN

Maximum bending moment at centre = 1310.4 x 6 - 68.4 x $\frac{6^2}{2}$ - 900 x 2 = 4831.2 kN.m

Maximum bending moment at point load = 1310.4 x 4 - 68.4 x $ \frac{4^2}{2} $ = 4694.4 kN.m

Therefore Maximum bending moment is at centre = 4831.2 kN.m

2) Design of web:

Section classification:

Serviceability requirements: $ \frac{d}{t \omega} \leq 200 \varepsilon $

Flange buckling requirements: $ \frac{d}{t \omega} \leq 345 \varepsilon f^2 $

Assume $ K = \frac{d}{t\omega} $ = web slenderness ratio = 180

Therefore, depth of plate girder = d = $ (\frac{M_2K}{fy} )^{0.33} = (\frac{4831.2 \times 10^6 \times 180}{250})^{0.33} = 1408.179 \approx 1420mm $

Therefore, thickness of web t $\omega$ = $ (\frac{M_2}{fyK^2})^{0.33} = (\frac{4831.2 \times 10^6}{250 \times 180^2})^{0.33} = 8.24 \approx 12mm $

As intermediate transverse stiffeners are not provided therefore increase the thickness of web.

Therefore, let us try web plate 1420 x 12mm in size.

3) Design of flanges:

Assume that flanges carry the bending moment and shear by web

Therefore, area of flange required Af = $ \frac{M_2 \gamma m_0}{fyd} = \frac{4831.2 \times 10^6 \times 1.1}{250 \times 1420} = 14969.91 mm^2 $

Assume width of flange plate = 0.3d = 0.3 x 1420 = 426 $\approx$ 440mm

Therefore, thickness of flange = $\frac{14969.91}{440} = 34 \approx 40mm$

Let us try flange plate 440 x 40mm in size.

4) Classification of flanges:

Out-stand of flange,b = $\frac{bf-t \omega}{2} = \frac{440-12}{2} = 214mm$

Therefore, $\frac{b}{fF} = \frac{214}{40} = 5.35 \lt 8.4 $

Therefore, flanges are plastic

5) Shear capacity $v \lt vd$

$ vd = \frac{v_n}{\gamma m_0} $

Nominal plastic shear resistance, $ v_n = v_p = \frac{A_v f y \omega}{\sqrt{3}}$

For welded section, $ A_v = d t \omega $

$ V_n = \frac{d t\omega f y \omega}{\sqrt{3} \times 1.1} = \frac{1420 \times 12 \times 250}{\sqrt{3} \times 1.1} = 2235.92 kN \gt 1310.1 kN $

Hence safe in shear.

6) Moment capacity of flanges

v = 1310.4kN $\lt$ 0.6 vd = 0.6 x 2235.92 = 1341.55 kN

Therefore, case is low shear

$ M_d = \frac{Bb Z_{pz}fy}{\gamma m_0} $

B$_b$ = 1 for plastic section

$ Z_{pz} = \frac{A}{2}(\bar{y_1} + \bar{y_2}) = \frac{2bftf(D-tf)}{2} = \frac{2 \times 440 \times 40}{2} \times (1500 - 40) = 25.696 \times 10^6 mm^3 $

Moment capacity = $\frac{1 \times 25.696 \times 10^6 \times 250}{1.10} = 5840 kNm \gt 4831.2 kNm $

7) Shear buckling design by simple post-critical method.

Ter, $\tau$ = Elastic critical shear stress of the web = $\frac{K_v \pi^2E}{12(1-\mu^2)} (\frac{t \omega}{d})^2$

$ K_v = 5.35 $ when transverse stiffeners are provided only and supports.

$ \mu = 0.3 $

$ \tau = \frac{5.35 \times \pi^2 \times 2 \times 10^5}{12(1-0.3^2)}(\frac{12}{1420})^2 = 69.06 N/mm^2 $

$ \lambda_\omega $ = Non-dimensional web slenderness ratio for shear buckling stress,

$ \lambda_\omega = \sqrt{\frac{fy \omega}{\sqrt{3} \tau}} = \sqrt{\frac{250}{\sqrt{3} \times 69.06}} = 1.44 \gt 1.2 $

$ \therefore \tau_b $ = Shear stress corresponding to buckling (when $\lambda_\omega \gt 1.2)$

$ \tau_b = \frac{fy\omega}{\sqrt{3} \lambda \omega^2} = \frac{250}{\sqrt{3} \times 1.44^2} = 69.60 N/mm^2 $

Shear force corresponding to web buckling,

$ V_{er} = A_v \tau_b= d \times t \omega \times \tau_b = 1420 \times 12 \times 69.60 = 1186.10 kN \lt 1310.4kN$ which is safe.

Therefore revised the web thickness

Let us try 14mm thickness for web,

$ \tau_{er} = \frac{5.35 \times \pi^2 \times 2 \times 10^5}{12(1-0.3^2)}(\frac{14}{1420})^2 = 94 N/mm^2 \\ \lambda_\omega = \sqrt{\frac{fy \omega}{\sqrt{3} \times \tau}} = \sqrt{\frac{250}{\sqrt{3} \times 94}} = 1.234 \gt 1.2 \\ \tau_b = \frac{250}{\sqrt{3} \times 1.234^2} = 94.78 N/mm^2 \\ V_{er} = 1420 \times 14 \times 94.78 = 1884.36 kN \gt 1310.4kN \\ \therefore safe $

8) Flange to web connection.

There will be two weld lengths along the span for each flange to web connection

$ \omega $ = Horizontal shear between flange to web

$ = \frac{V_df\bar{y}}{2I_z} $

$ I_z = \frac{bfD^3}{12} - \frac{(bf-t\omega)d^3}{12} = \frac{440 \times 1500^3}{12} - \frac{(440-14)1420^3}{12} = 22103.27 \times 10^6 mm^4 $

$ \bar{y} = \frac{D}{2} = \frac{1500}{2} = 750 mm \\ Af = bf \times tf = 440 \times 40 = 17600 mm^2 $

$ \therefore \omega = \frac{1310.4 \times 17600 \times 750}{2 \times 22103.27 \ times 10^6} = 0.39 kN/mm $

Provide size of weld = 7mm

K$_s$ = 0.7 x 7 = 4.9 mm

Strength of weld per unit length

$ f\omega d = \frac{4.9 \times 250}{\sqrt{3} \times 1.50} = 0.471 kN/mm \gt 0.39 kN/mm \\ \therefore Safe $

9) End bearing stiffeners

$ F_w = (b_1 + n_2) \frac{t\omega fy \omega}{rm_0} $

Assume b$_1$ = Bearing length = 0

n$_2$ = 2 x 40 x 2.5 = 200mm

$ F_w = (0 + 200) \times \frac{12 \times 250}{1.1} = 545.45 kN \lt 1310.4 kN $

Let us try two-flat sections as stiffeners one on each side of web. Maximum available width = $\frac{bf - t\omega}{2} = \frac{440-12}{2} = 214 mm $

Let us provide 12 mm thick flat section.

Maximum permissible out-stand = 20 x 12 = 240 mm

Minimum permissible out-stand = 14 x 12 = 168 mm

Let us try flat section 180 x 12 mm in size

10) Check for buckling of stiffener:

Effective area of stiffener = (2x180x12) + (2x20x12x12) = 10080mm$^2$

enter image description here

Moment of Inertia of stiffener $ = 2[\frac{180^3 \times 12}{12} + 12 \times 180 \times (\frac{180}{2} + \frac{12}{2})^2] = 51.47 \times 10^6 mm^4 $

Radius of gyration, $ r = \sqrt{\frac{1}{A}} = \sqrt{\frac{51.47 \times 10^6}{10080}} = 71.46 $

Slenderness ratio = $ \lambda = \frac{0.7 \times 1420}{71.46} = 13.90 $

For $ \lambda = 13.90, \,\, F_{cd} = 227 - \frac{227-224}{20-10}(13.90-10) = 225.83 N/mm^2 $

Buckling resistance pd = A x F$_{cd}$ = 10080 x 225.83 = 2276.36 kN $\gt$ 1310.4 kN

Therefore, Safe

11) Bearing capacity of stiffener

$ F_{psd} = \frac{Aa fya}{0.8 rm_0} \\ Aa = 2 \times 180 \times 12 = 4320 mm^2 $

Area of stiffener in contact with flange $ \frac{4320 \times 250}{0.8 \times 1.1} = 1227.27 kN \ngtr 1310.4 kN $

Therefore, Not safe

Therefore, Revised stiffener plate 200 from 180mm

12) Torsional resistance provided by end bearing stiffener

$ I_s \geq 0.34 \alpha_s D^s \tau_c f \\ I_s = \frac{bd^3}{12} \times 2 = \frac{12 \times (200 \times 2)^3}{12} = 64 \times 10^6 mm^4 \\ I_y = \frac{2tfbf^3}{12} + \frac{df\omega^3}{12} \\ = \frac{2 \times 40 \times 440^3}{12} + \frac{1420 \times 12^3}{12} \\ = 567.85 \times 10^6 + 204.48 \times 10^3 \\ = 568.05 \times 10^6 mm^4 $

$ A = 2 \times 440 \times 40 + 1420 \times 12 = 52.24 \times 10^3 mm^2 $

$ r_y = \sqrt{\frac{I_y}{A}} = \sqrt{\frac{568.05 \times 10^6}{52.24 \times 10^3}} = 104.27 mm $

$ \lambda = \frac{LLT}{r_y} = \frac{12 \times 10^3}{104.27} = 115.07 \gt 100 $

For $ LLT \gt I_\omega \alpha_s = \frac{30}{\lambda^2} = \frac{30}{115.072} = 2.26 \times 10^{-30} \\ 0.34 \alpha_s D^3 \tau_c f = 0.34 \times 2.26 \times 10^{-3} \times (1420 + 2 \times 40)^3 \times 40 = 103.37 \times 10^6 mm^4 \\ \therefore I_s \ngtr 0.34 \alpha_s D^3 \tau_c f $

Therefore, Not safe

Therefore increase the size of stiffener

Therefore provide 210x18 mm in size

Please log in to add an answer.