written 6.8 years ago by | modified 2.8 years ago by |
Subject: Design and Drawing of Steel Structure
Topic: Compression Member
Difficulty: High
written 6.8 years ago by | modified 2.8 years ago by |
Subject: Design and Drawing of Steel Structure
Topic: Compression Member
Difficulty: High
written 6.4 years ago by |
Given
Fractured load = 1600 kN, Effective length = 5200 mm, 4.6 grade 20 mm diameter bolts.
To know: Design batten system, using two channels placing back to back.
For double channels slenderness ratio to be assumed between 40-80.
Therefore, assume allowable compression stress = 190 N/mm$^2$
C\S area required = $ \frac{1600 \times 10^3}{190} $ = 8421.05 mm$^2$
Let us try 215MC 300 at 351.2 N/m, properties of 15MC 300 are:
A = 4564 mm$^2$, I$_xx$ = 6362.6 x 10$^4$ mm$^4$
I$_yy$ = 310.8 x 10$^4$ mm$^4$, r$_xx$ = 118.1 mm, r$_yy$ = 26.1mm
c$_yy$ = 23.6 mm
Area provided = 2x4564=9128 mm$^2$
Effective slenderness ratio = $ \frac{KL}{r}|_c = 1.1 \times \frac{5200}{118.1} = 48.33 $
For effective slenderness ratio = 48.33, F$_y$ = 250 N/mm$^2$ and buckling class, the design compression stress = $ 198 - \frac{198-183}{50-40}(48.33-40) = 185.5 N/mm^2 $
Therefore, Design compression strength = $ F_c d A_c = 185.5 \times 9128 = 1693.24 kN \gt 1600 kN $
Therefore, safe.
Spacing of channels:
$ I_{xx} = I_{yy} \\ 2 \times 6362.6 \times 10^4 = 2[I_{yy} + Ah^2] \\ = 2[310.8 \times 10^4 + 4564(\frac{S}{2} + 23.6)^2] \\ 63.62 \times 10^6 = 310.8 \times 10^4 + 4564 (\frac{S}{2} + 23.6)^2 \\ 13259.42 = (\frac{S}{2} + 23.6)^2 \\ 115.15 = \frac{S}{2} + 23.6 \\ \frac{S}{2} = 91.55 \\ \therefore S = 183.099 \approx 185 mm $
Therefore provide 215MC 300 at 351.2 N/m at a spacing 185mm back to back.
Spacing of battens:
$ (\frac{C}{r_{min}})_{component} \ngtr 50 \hspace{0.20cm} \& \hspace{0.20cm} \ngtr 0.7 \lambda_e \\ \therefore \frac{C}{ry} \lt 0.7 \lambda_e \\ C = 0.7 \times 48.33 \times 26.1 = 882.98 mm $
Also,
$ \frac{C}{ry} \lt 50 \\ C = 50 \times 26.1 = 13.5 mm $
Therefore, provide spacing = 900 mm
Size of end battens:
Effective depth = S + 2 c$_yy$ = 185 + 2x23.6 = 232.2 mm
Overall depth = Effective depth + 2 x edge distance
(Provide 20 mm dia bolts, edge distance = 1.5 x 22 = 33 $\approx$ 35mm)
Therefore, overall depth = 232.2 + 2x35 = 302.2 $\approx$ 310 mm
Thickness of battens = $\frac{1}{50}(185+2 \times 50) = 5.7 \approx 6 mm$
Provide 6 mm thick batten.
Length of battens = 185 + 2 x 90 = 365 mm
Therefore, provide end battens plate of size 365x310x6 mm$^3$
Size of intermediate battens:
Effective depth = $\frac{3}{4}$ effective depth of end batten
= $\frac{3}{4} \times 232.2 = 174.15 mm$
Overall depth = 174.15 + 2x35 = 244.15 $\approx$ 250 mm
Therefore provide intermediate batten plate of size 365x250x6 mm$^3$
Design forces:
Transverse shear = vt = 2.5% of column load = $\frac{2.5}{100} \times 1600$ = 40 kN
Longitudinal shear = vb = $\frac{vtc}{NS} = \frac{40 \times 10^3 \times 900}{2 \times (185 + 2 \times 50)} = 63.157 kN $
$ Moment = M = \frac{vtc}{2N} = \frac{40 \times 10^3 \times .300}{2 \times 2} = 9 \times 10^6 N.mm $
Check for end battens:
Shear stress = $ \frac{vb}{A} = \frac{63.157 \times 10^3}{6 \times 310} = 33.95 N/mm^2 \lt \frac{Fy}{\sqrt{3} rm_1} = \frac{250}{\sqrt{3} \times 1.1} = 131.2 N/mm^2 $
Therefore, OK.
Bending stress = $ \frac{6M}{td^2} = \frac{6 \times 9 \times 10^6}{6 \times 310^2} = 93.65 N/mm^2 \lt \frac{Fy}{rm_1} = \frac{250}{1.1} = 227.27 N/mm^2 $
Therefore, Ok.
Check for intermediate battens:
Shear stress = $ \frac{vb}{A} = \frac{63.157 \times 10^3}{6 \times 250} = 42.10 N/mm^2 \lt 131.2 N/mm^2 $
Therefore, Ok.
Bending stress = $ \frac{6M}{td^2} = \frac{6 \times 9 \times 10^6}{6 \times 250^2} = 144 N/mm^2 \lt 227.27 N/mm^2 $
Therefore, Ok.
Connections:
Using 20mm dia., 4.6 grade bolt.
Strength of bolt in single shear = $ \frac{A_nbFvb}{\sqrt{3} r_{mb}} = \frac{0.78 \times \pi /4 \times 20^2 \times 400}{\sqrt{3} \times 1.25} = 45.26 kN $
Strength of bolt in bearing = $ \frac{2.5KbdtFv}{r_{mb}} = \frac{2.5 \times 1 \times 20 \times 6 \times 400}{1.25} = 96 kN $
Therefore, strength of bolt = 45.26 kN
Number of bolts required = $ \frac{ longitudinal \,\, shear}{strength \,\, of \,\, bolt} = \frac{63.157}{45.26} = 1.39 \approx 5 $
Increase the number of bolt to account for bending moment
Therefore, pitch = $ \frac{1}{4}(310- 2 \times 35) = 60 mm $ (For bolt in one row)
Force on each bolt due to longitudinal shear = $ \frac{63.157}{5} = 12.63 kN $
Force due to moment = $ \frac{M_r}{\sum r^2} = \frac{9 \times 10^6 \times 120}{2 \times 120^2 + 2 \times 60^2} = 30 kN $
Resultant force = $ \sqrt{12.63^2 + 30^2} \lt 45.26 kN $
Therefore, safe.
No. of battens plate on one face = $ \frac{length \,\, of \,\, column}{spacing \,\, of \,\, battens} + 1 = \frac{5200}{900} + 1 = 6.77 \approx 7 $
Revised centre to centre distance of battens = $ \frac{5200}{7.1} = 866.67mm $