(i) Number of nodes and elements
(ii) Element matrix equation
$$
\begin{Bmatrix}
\begin{bmatrix}
h_cA & 0 \\
0 & 0
\end{bmatrix}
+ \frac{kA}{h_e} \begin{bmatrix}
1 & -1 \\
-1 & 1
\end{bmatrix}
\end{Bmatrix}
\begin{Bmatrix}
\theta_1 \\
\theta_2
\end{Bmatrix}
=
\begin{Bmatrix}
Q_1 \\
Q_2
\end{Bmatrix}
$$
For element 1
h$_c$ = 30 W/m$^2$; A = 1m$^2$; K = 25; h$_e$ = 0.3
$ \therefore \frac{KA}{h_e} = \frac{25 \times 1}{0.3} = 83.33 $
$$
\begin{Bmatrix}
\begin{bmatrix}
30 & 0 \\
0 & 0
\end{bmatrix}
+ \begin{bmatrix}
83.33 & -83.33 \\
-83.33 & 83.33
\end{bmatrix}
\end{Bmatrix}
\begin{Bmatrix}
\theta_1 \\
\theta_2
\end{Bmatrix}
=
\begin{Bmatrix}
Q_1 \\
Q_2
\end{Bmatrix}
$$
$$
\begin{bmatrix}
113.33 & -83.33 \\
-83.33 & 83.33
\end{bmatrix}
\begin{Bmatrix}
\theta_1 \\
\theta_2
\end{Bmatrix}
=
\begin{Bmatrix}
Q_1 \\
Q_2
\end{Bmatrix}
$$
For element 2
h$_c$ = 0; A = 1m$^2$; K = 30; h$_e$ = 0.2
$ \therefore \frac{KA}{h_e} = \frac{30 \times 1}{0.2} = 150 $
$$
\begin{bmatrix}
150 & -150 \\
-150 & 150
\end{bmatrix}
\begin{Bmatrix}
\theta_2 \\
\theta_3
\end{Bmatrix}
=
\begin{Bmatrix}
Q_2 \\
Q_3
\end{Bmatrix}
$$
For element 3
h$_c$ = 30 W/m$^2$; A = 1m$^2$; K = 70; h$_e$ = 0.15
$ \therefore \frac{KA}{h_e} = \frac{70 \times 1}{0.15} = 466.67 $
$$
\begin{Bmatrix}
\begin{bmatrix}
0 & 0 \\
0 & 30
\end{bmatrix}
+ \begin{bmatrix}
466.67 & -466.67 \\
-466.67 & 466.67
\end{bmatrix}
\end{Bmatrix}
\begin{Bmatrix}
\theta_3 \\
\theta_4
\end{Bmatrix}
=
\begin{Bmatrix}
Q_3 \\
Q_4
\end{Bmatrix}
$$
$$
\begin{bmatrix}
466.67 & -466.67 \\
-466.67 & 466.67
\end{bmatrix}
\begin{Bmatrix}
\theta_3 \\
\theta_4
\end{Bmatrix}
=
\begin{Bmatrix}
Q_3 \\
Q_4
\end{Bmatrix}
$$
(iii) Global matrix equation
$$
\begin{bmatrix}
113.33 & -83.33 & 0 & 0 \\
-83.33 & 233.33 & -150 & 0 \\
0 & -150 & 616.67 & -466.67 \\
0 & 0 & -466.67 & 496.67
\end{bmatrix}
\begin{Bmatrix}
\theta_1 \\
\theta_2 \\
\theta_3 \\
\theta_4 \\
\end{Bmatrix}
=
\begin{Bmatrix}
Q_1 \\
Q_2 \\
Q_3 \\
Q_4
\end{Bmatrix}
$$
Imposing boundary condition,
$ \theta_1 = 800^\circ C \hspace{0.5cm} \theta_4 = 20^\circ C \\
\theta_2 = \theta_3 = 0 \,\, (For \,\, balancing)$
$$
\begin{bmatrix}
113.33 & -83.33 & 0 & 0 \\
-83.33 & 233.33 & -150 & 0 \\
0 & -150 & 616.67 & -466.67 \\
0 & 0 & -466.67 & 496.67
\end{bmatrix}
\begin{Bmatrix}
800 \\
\theta_2 \\
\theta_3 \\
20 \\
\end{Bmatrix}
=
\begin{Bmatrix}
Q_1 \\
0 \\
0 \\
Q_4
\end{Bmatrix}
$$
Now,
(113.33 x 800) - 83.33 $\theta_2$ = $\theta_1$ ...(1)
(-83.33 x 800) + 233.33 $\theta_2$ - 150 $\theta_3$ = 0 ...(2)
(-150 $\theta_2$ + 616.67 $\theta_3$ - 466.67 x 20) = 0 ...(3)
(-466.67 $\theta_3$ + 496.67 x 20) = $\theta_4$ ...(4)
By solving equation (2) and (3), we get