written 6.7 years ago by | • modified 6.7 years ago |
Shape function for Quadratic Element
The element has 3 nodes.
Pilot function will be $\phi = A \bar x \left[ \bar x - \frac{h_e}{2} \right] [\bar x - h_e] \space \space \space.... (1)$
For node 1, $\bar x$ vanishes.
$ \therefore \phi_1 = A \left[ \bar x - \frac{h_e}{2} \right] [\bar x - h_e] $
At node 1, $\phi_1 = 1$ & $\bar x = 0$, above equation becomes
$1 = A \left[ \frac{-h_e}{2} \right] (-h_e)$
$\therefore A = \frac{2}{h_e^2}$
$\therefore \phi_1 = \frac{2}{h_e^2} \left( \bar x - \frac{h_e}{2} \right) (\bar x - h_e)$
Rearranging the term
$\phi_1 = \left( 1 - \frac{2\bar x}{h_e} \right) \left( 1 - \frac{\bar x}{h_e} \right)$
For node 2, term $\left( \bar x - \frac{h_e}{2} \right) $ vanishes.
Equation (1) becomes $\phi_2 = A \bar x (\bar x - h_e)$
At node 2, $\bar x = \frac{h_e}{2} \space \space \space \space \phi_2 = 1$
$\therefore 1 = A. \frac{h_e}{2} \left( \frac{h_e}{2} - h_e \right) $
$\space \space \space = A \left( \frac{h_e}{2} \right) \left( \frac{-h_e}{2} \right) $
$A = \frac{-4}{h_e^2}$
$\therefore \phi_2 = \frac{-4}{h_e^2} \bar x (\bar x - h_e)$
Rearranging the term we get
$\phi_2 = \frac{4 \bar x}{h_e} \left( 1 - \frac{\bar x}{h_e} \right) $
For node 3, $(\bar x - h_e)$ vanishes.
Equation (1) becomes $\phi_3 = A \bar x \left( \bar x - \frac{h_e}{2} \right)$
At node 3, $\phi_3 = 1 \space \space \space \bar x = h_e$
$\therefore 1 = A. h_e \left(h_e - \frac{h_e}{2} \right) $
$\space \space \space = A (h_e) \left( \frac{h_e}{2} \right) $
$\therefore A = \frac{2}{h_e^2} $
$\phi_3 = \frac{2}{h_e^2}. \bar x (\bar x - h_e) $
Rearranging the term we get
$ \phi_3 = \frac{-\bar x}{h_e} \left( 1 - \frac{2\bar x}{h_e} \right) $