written 6.6 years ago by
teamques10
★ 68k
|
•
modified 6.5 years ago
|
Given D.E is $ \frac{d}{dx}(a \frac{du}{dx}) + bu + c = 0; \hspace{0.5cm} 0 \leq x \leq 1 $
Boundary conditions are
u(0) = u$_0$
$ a \frac{du}{dx}|_{x=L} = 0 $
1) Discretization: Dividing the domain into 3 elements
2) Take a general element of length he and set its local co-ordinate
$ x = x_A + \bar{x} $
Differentiating above eq, we get,
$ dx = d \bar{x} $
3) Converting governing differential equation into local co-ordinate
$ dx = d \bar{x} \\
\therefore \frac{d}{d \bar{x}} (a \frac{du}{d \bar{x}}) + cu + q = 0 $
Local boundaries are
$ a \frac{du}{d \bar{x}}|_{\bar{x} = 0} = - Q_1 \\
a \frac{du}{d \bar{x}}|_{\bar{x} = he} = Q_2 $
4) To find residue
$ \frac{d}{d \bar{x}} (a \frac{du}{d \bar{x}}) + cu + q = R $
5) Weighted Integral form
$ \int_0^1 w_i R \,\, dx = 0 \\
\int_0^{he} w_i[\frac{d}{d \bar{x}} (a \frac{du}{d \bar{x}}) + cu + q] \,\, d \bar{x} = 0 \\
\int_0^{he} w_i \frac{d}{d \bar{x}}(a \frac{du}{d \bar{x}}) \,\, d \bar{x} + \int_0^{he} w_i cu \,\, d \bar{x} + \int_0^{he} w_i q \,\, d \bar{x} = 0 \hspace{0.5cm} ....(A) $
Consider $ \int_0^{he} w_i \frac{d}{d \bar{x}}(a \frac{du}{d \bar{x}}) \,\, d \bar{x} $
Integrating by parts, above equation becomes,
$ []_0^{he} + []_0^{he} $