Cross Section Area = A; Modulus of Elasticity = E
Governing D.E is given by,
$\frac{d}{dx}[EA \frac{du}{dx}] = 0 $ for 0 $\leq$x$\leq$l
Boundary conditions are
u(0) = 0
$ \frac{du}{dx}|_{x=l} = \frac{P}{AE} $
1) Approximate solution is given by,
$u = C_0 + C_1x + C_2x^2 + C_3x^3 $ .....(1)
Differentiating above equation,
$ \frac{du}{dx} = C_1 + 2C_2x + 3C_3x^2 $ .....(2)
i) At x = 0, u = 0, then equation (1) becomes; 0 = C$_0$
ii) At x = l, $ \frac{du}{dx} = \frac{P}{AE} $
Eq. (2) becomes,
$ \frac{P}{AE} = C_1 + 2C_2l + 3C_3l^2 \\
\therefore C_1 = \frac{P}{AE} - 2C_2l - 3C_3l^2 $
Substituting th evalues of C$_0$ and C$_1$ in eq (1), we get,
$ u = [\frac{P}{AE} - 2C_2l - 3C_3l^2]x + C_2x^2 + C_3x^3 \\
\therefore u = (x^2-2lx)C_2 + (x^3-3l^2x)C_3 + \frac{P}{AE}x $
Differentiating the above eq w.r.t x
$ \frac{du}{dx} = (2x-2l)C_2 + (3x^2-3l^2)C_3 + \frac{P}{AE} $
Differentiating again,
$ \frac{d^2u}{dx^2} = 2C_2 + 6xC_3 $
2) To find residue
$ \frac{d}{dx}[EA \frac{du}{dx}] = R \\
EA \frac{d^2u}{dx^2} = R $
Substitute the value of $ \frac{d^2u}{dx^2} $ in above equation,
EA (2C$_2$ + 6xC$_3$) = R
3) Weighted integral form,
$ \int_0^1 w_iR \,\, dx = 0 \\
\int_0^l w_i[EA (2C_2 + 6xC_3)] \,\, dx = 0 $ .....(3)
Now, w = coefficient of constant c in u
$ w_1 = (x^2 - 2lx) \hspace{0.5cm} w_2 = (x^3 - 3lx) $
For i = 1, $ w_1 = (x^2 - 2lx) $, eq (3) becomes
$ \int_0^l (x^2 - 2lx)(2C_2 + 6xC_3) \,\, dx = 0 \\
\int_0^l [2x^2C_2 - 4lxC_2 + 6C_3x^3 - 12 lx^2C_3] \,\, dx = 0 \\
2C_2\int_0^l x^2 \,\, dx - 4lC_2\int_0^l x \,\, dx + 6C_3\int_0^l x^3 \,\, dx - 12lC_3\int_0^l x^2 \,\, dx = 0 \\
2C_2[\frac{x^3}{3}]_0^l - 4lC_2[\frac{x^2}{2}]_0^l + 6C_3[\frac{x^4}{4}]_0^l - 12lC_3[\frac{x^3}{3}]_0^l = 0 \\
2C_2[\frac{l^3}{3}] - 4lC_2[\frac{l^2}{2}] + 6C_3[\frac{l^4}{4}] - 12lC_3[\frac{l^3}{3}] = 0 \\
C_2[\frac{2l^3}{3} - \frac{4l^3}{2}] + C_3[\frac{6l^4}{4} - \frac{12l^4}{3}] = 0 \\
-1.333l^3C_2 -2.5l^4C_3 = 0 \hspace{1cm} ...(A)$
For i = 2, $ w_2 = x^3-3xl^2 $
$ \int_0^l (x^3-3xl^2)(2C_2 + 6C_3x) \,\, dx = 0 \\
[\frac{2C_2 x^4}{4} - \frac{6C_2l^2x^2}{2} + \frac{6C_3x^4}{5} - \frac{6C_3x^3l^2}{1}]_0^l = 0 \\
C_2[\frac{l^4}{2} - \frac{3l^4}{1}] + C_3[\frac{6l^5}{5} - 6l^5] = 0 \\
-2.5l^4C_2 - 4.8l^5C_3 = 0 \hspace{1cm} ...(B) $
Bt solving eq(A) and eq(B), we get,
C$_2$ = C$_3$ = 0
Therefore approximate solution u becomes,
$ u = \frac{P}{AE}x $