0
1.6kviews
Solve it by using Rayleigh Ritz method for two linear element

It is required to carry out one dimensional structural analysis of a circular bar of length 'L' fixed at one end and carries a point load 'P' at other end. Find the suitable differential equation with required boundary condition justify and solve it by using Rayleigh Ritz method for two linear element.


1 Answer
0
12views

enter image description here

Cross Section Area = A; Modulus of Elasticity = E

Governing D.E is given by,

$\frac{d}{dx}[EA \frac{du}{dx}] = 0 $ for 0 $\leq$x$\leq$l

Boundary conditions are

u(0) = 0

$ \frac{du}{dx}|_{x=l} = \frac{P}{AE} $

1) Approximate solution is given by,

$u = C_0 + C_1x + C_2x^2 + C_3x^3 $ .....(1)

Differentiating above equation,

$ \frac{du}{dx} = C_1 + 2C_2x + 3C_3x^2 $ .....(2)

i) At x = 0, u = 0, then equation (1) becomes; 0 = C$_0$

ii) At x = l, $ \frac{du}{dx} = \frac{P}{AE} $

Eq. (2) becomes,

$ \frac{P}{AE} = C_1 + 2C_2l + 3C_3l^2 \\ \therefore C_1 = \frac{P}{AE} - 2C_2l - 3C_3l^2 $

Substituting th evalues of C$_0$ and C$_1$ in eq (1), we get,

$ u = [\frac{P}{AE} - 2C_2l - 3C_3l^2]x + C_2x^2 + C_3x^3 \\ \therefore u = (x^2-2lx)C_2 + (x^3-3l^2x)C_3 + \frac{P}{AE}x $

Differentiating the above eq w.r.t x

$ \frac{du}{dx} = (2x-2l)C_2 + (3x^2-3l^2)C_3 + \frac{P}{AE} $

Differentiating again,

$ \frac{d^2u}{dx^2} = 2C_2 + 6xC_3 $

2) To find residue

$ \frac{d}{dx}[EA \frac{du}{dx}] = R \\ EA \frac{d^2u}{dx^2} = R $

Substitute the value of $ \frac{d^2u}{dx^2} $ in above equation,

EA (2C$_2$ + 6xC$_3$) = R

3) Weighted integral form,

$ \int_0^1 w_iR \,\, dx = 0 \\ \int_0^l w_i[EA (2C_2 + 6xC_3)] \,\, dx = 0 $ .....(3)

Now, w = coefficient of constant c in u

$ w_1 = (x^2 - 2lx) \hspace{0.5cm} w_2 = (x^3 - 3lx) $

For i = 1, $ w_1 = (x^2 - 2lx) $, eq (3) becomes

$ \int_0^l (x^2 - 2lx)(2C_2 + 6xC_3) \,\, dx = 0 \\ \int_0^l [2x^2C_2 - 4lxC_2 + 6C_3x^3 - 12 lx^2C_3] \,\, dx = 0 \\ 2C_2\int_0^l x^2 \,\, dx - 4lC_2\int_0^l x \,\, dx + 6C_3\int_0^l x^3 \,\, dx - 12lC_3\int_0^l x^2 \,\, dx = 0 \\ 2C_2[\frac{x^3}{3}]_0^l - 4lC_2[\frac{x^2}{2}]_0^l + 6C_3[\frac{x^4}{4}]_0^l - 12lC_3[\frac{x^3}{3}]_0^l = 0 \\ 2C_2[\frac{l^3}{3}] - 4lC_2[\frac{l^2}{2}] + 6C_3[\frac{l^4}{4}] - 12lC_3[\frac{l^3}{3}] = 0 \\ C_2[\frac{2l^3}{3} - \frac{4l^3}{2}] + C_3[\frac{6l^4}{4} - \frac{12l^4}{3}] = 0 \\ -1.333l^3C_2 -2.5l^4C_3 = 0 \hspace{1cm} ...(A)$

For i = 2, $ w_2 = x^3-3xl^2 $

$ \int_0^l (x^3-3xl^2)(2C_2 + 6C_3x) \,\, dx = 0 \\ [\frac{2C_2 x^4}{4} - \frac{6C_2l^2x^2}{2} + \frac{6C_3x^4}{5} - \frac{6C_3x^3l^2}{1}]_0^l = 0 \\ C_2[\frac{l^4}{2} - \frac{3l^4}{1}] + C_3[\frac{6l^5}{5} - 6l^5] = 0 \\ -2.5l^4C_2 - 4.8l^5C_3 = 0 \hspace{1cm} ...(B) $

Bt solving eq(A) and eq(B), we get,

C$_2$ = C$_3$ = 0

Therefore approximate solution u becomes,

$ u = \frac{P}{AE}x $

Please log in to add an answer.