General D.E. is given by,
$ - \frac{d}{dx}[(x-1) \frac{du}{dx}] = x^2; \hspace{0.5cm} 3 \leq x \leq 5 $
Simplified as,
$ - [(x-1) \frac{d^2u}{dx^2} + \frac{du}{dx}] = x^2 $
With boundary condition,
u(5) = 10 and u'(3) = 5
Approximate solution is given by,
$ u = C_0 + C_1x + C_2x^2 + C_3x^3 $
Imposing boundary conditions at x = 5 and u = 10,
$ 10 = C_0 + 5C_1 + 25C_2 + 125C_3 \\
\therefore C_0 = 10 - 5C_1 - 25C_2 - 125C_3 $
Now, therefore
$ u = 10 - 5C_1 - 25C_2 - 125C_3 + C_1x + C_2x^2 + C_3x^3 \\
\therefore u = C_1(x-5) + C_2(x^2-25) + C_3(x^3-125) + 10 $
Differentiating above equation,we get,
$ \frac{du}{dx} = C_1 + 2C_2x + 3C_3x^2 $
Now at x = 3, $\frac{du}{dx}$ = 5
$ \therefore 5 = C_1 + 6C_2 + 27C_3 \\
\therefore C_1 = 5 - 6C_2 - 27C_3 $
Now, therefore,
$ u = (5 - 6C_2 - 27C_3)(x-5) + C_2(x^2-25) + C_3(x^3-125) + 10 \\
\therefore u = C_2(x^2 - 6x + 5) + C_3(x^3-27x+10) + 5(x-5) + 10 $
Residual function,
$ (x-1) \frac{d^2u}{dx^2} +\frac{du}{dx} + x^2 = R \\
\frac{du}{dx} = C_2(2x-6) + C_3(3x^2-27) + 5 \hspace{1cm} [\because u = C_2(x^2 - 6x + 5) + C_3(x^3-27x+10) + 5(x-5) + 10] \\
\frac{d^2u}{dx^2} = 2C_2 + 6xC_3 $
Therefore, above equation becomes,
$ (x-1)(2C_2 + 6xC_3) + C_2(2x-6) + C_3(3x^2-27) + 5 + x^2 = R \\
C_2[2x-2+2x-6] + C_3[6x^2-6x+3x^2-27] + [5+x^2] = R \\
C_2(4x-8) + C_3(9x^2-6x-27) + (5+x^2) = R $
Weighted integral form,
$ \int_3^5 w_iR \,\, dx = 0 \\
\int_3^5 w_i [C_2(4x-8) + C_3(9x^2-6x-27) + (5+x^2)] \,\, dx = 0 $
Galerkin method, w$_i$ = coefficient of constant from u
For i = 1, $ w_1 = (x^2-6x+5) $
$ \int_3^5 [x^2-6x+5][C_2(4x-8) + C_3(9x^2-6x-27) + (5+x^2)] \,\, dx = 0 \\
C_2 \int_3^5 (x^2-6x+5)(4x-8) \,\, dx + C_3 \int_3^5 (x^2-6x+5)(9x^2-6x-27) \,\, dx + \int_3^5 (x^2-6x+5)(5+x^2) \,\, dx = 0 \\
\therefore -37.33C_2 - 422.4C_3 - 102.933 = 0 \\
\therefore 37.33C_2 + 422.4C_3 = -102.933 \hspace{1cm} .....(A) $
Now for i = 2; $ w_2 = (x^3 - 27x + 10) $
$ \int_3^5 [x^3 - 27x + 10][C_2(4x-8) + C_3(9x^2-6x-27) + (5+x^2) \,\, dx = 0 \\
C_2 \int_3^5 (x^3 - 27x + 10)(4x-8) \,\, dx + C_3 \int_3^5 (x^3 - 27x + 10)(9x^2-6x-27) \,\, dx + \int_3^5 (x^3 - 27x + 10)(5+x^2) \,\, dx = 0 \\
-422.4C_2 - 4790.4C_3 - 1162.7 = 0 \\
422.4C_2 + 4790.4C_3 = - 1162.7 \hspace{1cm} .....(B) $
By solving equation (A) and (B), we get,
C$_2$ = -4.87 and C$_3$ = 0.186
Approximate solution is given by,
$ u = -4.87(x^2-6x+5) + 0.186(x^3-27x+10) + 5(x-5) + 10 $
Now,
At x = 4; u = 13.286
At x = 5; u = 10
Exact solution,
$ - \frac{d}{dx}[(x-1) \frac{du}{dx}] = x^2 $
Integrating on both the sides,
$ (x-1) \frac{du}{dx} = - \frac{x^3}{3} + c $
Now, at x = 3, $\frac{du}{dx}$ = 5
Therefore, c = 19
$ \therefore \frac{du}{dx} = - \frac{x^3}{3(x-1)} + \frac{19}{x-1} $
Integrating on both the sides, we get,
$ \int du = - \frac{1}{3} \int \frac{x^3}{x-1} \,\, dx + 19 \int \frac{1}{x-1} \,\, dx \\
\int du = - \frac{1}{3} \int \frac{x^3-1}{x-1} + \frac{1}{x-1} \,\, dx + 19 \int \frac{1}{x-1} \,\, dx \\
u = - \frac{1}{3} \int [ \frac{(x-1)(x^2+x+1)}{x-1} + \frac{1}{x-1}] \,\, dx + 19 log(x-1) + c \\
u = - \frac{1}{3} \int (x^2+x+1) \,\, dx - \frac{1}{3} \int \frac{1}{x-1} \,\, dx + 19log(x-1) + c \\
u = - \frac{1}{3} (\frac{x^3}{3} + \frac{x^2}{2} + x) - \frac{1}{3} log(x-1) + 19 log(x-1) + c_1 \\
u = - \frac{1}{3} (\frac{x^3}{3} + \frac{x^2}{2} + x) + \frac{56}{3} log(x-1) + c_1 $
Now at x = 5, u = 10, therefore c$_1$ = 3.82
$ \therefore u = - \frac{1}{3} ( \frac{x^3}{3} + \frac{x^2}{2} + x) + \frac{56}{3} log(x-1) + 3.82 $
Now at x = 4, u = 13.21
at x = 5, u = 10