written 2.6 years ago by | • modified 2.6 years ago |
Solution :
Given :
Width of channel, $ b=3 {~m}$
Specific energy, $E=3 {~kg}.{m} /{kg}=3{~m}$
For the given value of specific energy, the discharge will be maximum, when depth of flow is critical.
$$ h_{c}=h=\frac{2}{3}{E}=\frac{2}{3} \times 3=2 {~m} $$
$\therefore$ Maximum discharge, $Q_{\max }$ is given by
$$ \begin{aligned}Q_{\max } &=\text { Area } \times \text { Velocity }\\ &=(b \times \text { depth of flow }) \times \text { Velocity }\\ &=\left(b \times h_{c}\right) \times V_{c} \end{aligned}$$
$(\because$ At critical depth, Velocity will be critical $)$ where $V_{c}$ is critical velocity and it is given by equation $$ V_{c} =\sqrt{g \times h_{c}}=\sqrt{9.81 \times 2.0}\ =4.43{~m} /{s} \ $$
$$ Q_{max } =\left(b \times h_{c}\right) \times V_{c} $$
$$ =(3 \times 2) \times 4.43$$
$$ =26.58 {~m}^{3}/ {~s} $$