Solution :
Given :
Discharge, $Q=600 ~Litre / {s}=0.6{~m}^{3} /{s} $
Bed slope, $ i =\frac{1}{8100} $
Manning's, $N =0.025$
Depth of water, $d=75=0.75 D$
From Figure, we have $O C=C D-O D=0.75 D-0.5 D=0.25 D$
In $\Delta$AOC
$$\begin{aligned} cos\alpha &=\frac{OC}{OA}=\frac{0.25D}{0.5D}=0.5\\
\alpha &=cos^{-1}0.5= 60°\\
\theta &=180°-\alpha=180°-60°\\
&=120°=2.0946 ~rad \end{aligned}$$
Wetted perimeter (P)
$$
\begin{aligned}
P &=2 R \theta=2 \times 0.5 \mathrm{D} \times 2.0496 \\
&=2.0496 D
\end{aligned}
$$
Area of flow (A)
$$
\begin{aligned}
A &=R^{2}\left(\theta-\frac{\sin 2 \theta}{2}\right) \\
&=(0.5 D)^{2}\left[2.0946-\frac{\sin \left( 240^{\circ}\right)}{2}\right] \\
&=0.25 D^{2}\left[2.0946-\left(\frac{-0.866}{2}\right)\right]\\
&=0.25 D^{2}[2.0946+0.433] \\
&=0.6319 D^{2} \\
m &=\frac{A}{P}=\frac{0.6319 D^{2}}{2.0496 D}=0.308 D
\end{aligned}
$$
Discharge by Manning's formula is given by
$$
\begin{aligned}
Q &=\frac{1}{N} \times A \times m^{2 / 3} \times i^{1 / 2} \\
0.6 &=\frac{1}{0.025} \times 0.6319 D^{2} \times(0.308 D)^{2 / 3} \times\left(\frac{1}{8100}\right)^{1 / 2} \\
0.6 &=0.128 \times D^{8 / 3} \\
D^{8 / 3} &=\frac{0.6}{0.128}=4.6875 \\
D &=(4.6875)^{3 / 8}\\
&=1.785 {~m}
\end{aligned}
$$