Solution :
Given :
Side slope, $\quad n=\frac{1}{1}=1$
Discharge, $\quad Q=13.75 \mathrm{~m}^{3} / \mathrm{s}$
Slope of bed, $\quad i=\frac{1}{1000}$
For unlined, $\quad C=44 $
For lined, $\quad C=60$
Let the cost per $\mathrm{m}^{2}$ of lining $=x$
Then cost per $\mathrm{m}^{3}$ of excavation $=4 x$
As the channel is most efficient,
Hydraulic mean depth,
$$m=\frac{d}{2}$$
where, $d=$ depth of channel
Let $\quad b=$ width of channel
Also for the most efficient trapezoidal channel,we have
Half of top width = length of sloping side
$$or$$
$\begin {aligned}\frac{b+2 n d}{2} &=d \sqrt{n^{2}+1}\\
or \\ \quad \frac{b+2 \times 1 \times d}{2} &=d \sqrt{1^{2}+1}=\sqrt{2 d} \\
b &=2 \times \sqrt{2 d}-2 d\\
&=0.828 d ....(i)\\
\text { Area, } \\
\quad A &=(b+n d) \times d\\
&=(0.828 d+1 \times d) \times d \\
&=1.828 d^{2} .......(ii)
\end {aligned}$
1) For unlined channel
Value of C=44
The discharge, $Q$ is given by,
or
$
\begin{aligned}
\space\space\space\space\space\space Q =A \times V =A \times C \sqrt{mi} \end{aligned}$
$\begin{aligned}13.75 =1.828 d^{2} \times 44 \times \sqrt{\frac{d}{2} \times \frac{1}{1000}} \end{aligned}$
$\left(\because A =1.828 d^{2}, m=\frac{d}{2}\right) $
$\space\space\space\space\space\space\space\space\space\space \begin{aligned}=\frac{1.828 \times 44}{\sqrt{2000}} \times d^{5 / 2} \end{aligned}$
$\begin{aligned} \space d^{5 / 2} =\frac{13.75 \times \sqrt{2000}}{1.828 \times 44} =7.6452 \end{aligned}
$
$\begin{aligned}\space\space\space\space\space\space d =(7.6452)^{2 / 5}\
=2.256 \mathrm{~m}
\end{aligned}
$
Substituting this value in equation $(i)$, we get
$$
b=0.828 \times 2.256=1.868 \mathrm{~m}
$$
Now cost of excavation per running metre length of unlined channel
= Volume of channel $\times$ cost per $\mathrm{m}^{3}$ of excavation
$=( Area \space of \space channel \times 1) \times 4 x=[(b+n d) \times d \times 1] \times 4 x$
$=(1.868+1 \times 2.256) \times 2.256 \times 1 \times 4 x=37.215 x ..........(iii)$
2) For lined channels
Value of C=60
The discharge is given by the equation,
$Q=A \times C \times \sqrt{m i}$
Substituting the value of $A$ from equation (ii) and value of $m=\frac{d}{2}$, we get
$$\begin{aligned}
13.75 =1.828 d^{2} × 60 × \sqrt{\frac{d}{2} × \frac{1}{1000}} \end{aligned}$$
$$ \space\space\space\space\space\space
\space\space \begin{aligned} =1.828 × 60 × \frac{1}{\sqrt{2000}} × d^{5 / 2} \end{aligned}$$
$\space\space\space\space \begin{aligned} d^{5 / 2} =\frac{13.75 × \sqrt{2000}}{1.828 × 60}=5.606 \end{aligned}$
$\space\space\space\space\space\space \space\space\space\begin{aligned} d =(5.606)^{2 / 5}=1.992 \mathrm{~m} \end{aligned}$
( $\because Q=13.75)$
Substituting this value in equation (i), we get
$$b=0.828 \times 1.992=1.649 \mathrm{~m}
$$
In case of lined channel, the cost of lining as well as cost of excavation is to be consid Now cost of excavation $= $(Volume of channel $) \times$ cost per $\mathrm{m}^{3}$ of excavation
$
\begin{aligned}
&=(b+n d) \times d \times 1 \times 4 x \\
&=(1.649+1 \times 1.992) \times 1.992 \times 4 x\\
&=29.01 x
\end{aligned}
$
Cost of lining
$=$ Area of lining $\times $ cost per ${m}^{2} $ of lining
$ \begin{aligned}
=(\text { Perimeter of lining } \times 1) \times x \
=\left(b+2 d \sqrt{1+n^{2}}\right) \times 1 \times x\
=\left(1.649+2 \times 1.992 \sqrt{1+1^{2}}\right) \times x \end{aligned}
$
$ \begin{aligned} \text{Total cost } =29.01 x+7.283 x=36.293 x
\end{aligned}
$
The total cost of lined channel is $36.293 x$ whereas the total cost of unlined channel is $37.215 x$.
Hence lined channel will be cheaper. The dimensions are
$$b=1.649 \mathrm{~m} $$
$$d=1.992 \mathrm{~m}$$