written 2.7 years ago by
RakeshBhuse
• 3.2k
|
•
modified 2.7 years ago
|
Solution :
Given :
$1^{st}$ Velocity Profile
$$\begin{aligned}
\frac{u}{U} &=\frac{3}{2}\left(\frac{y}{\delta}\right)-\frac{1}{2}\left(\frac{y}{\delta}\right)^{3} \\
\quad u &=\frac{3 U}{2}\left(\frac{y}{\delta}\right)-\frac{U}{2}\left(\frac{y}{\delta }\right)^{3}
\end{aligned}$$
Differentiating w.r.t. $y$,
$$
\frac{\partial u}{\partial y}=\frac{3 U}{2} \times \frac{1}{\delta }-\frac{U}{2} \times 3\left(\frac{y}{\delta }\right)^{2} \times \frac{1}{\delta }
$$
At $y=0$,
$$\begin{aligned}\left(\frac{\partial u}{\partial y}\right)_{y=0} &=\frac{3 U}{2\delta }-\frac{3 U}{2}\left(\frac{0}{\delta }\right)^{2} \times \frac{1}{\delta }\\
&=\frac{3 U}{2\delta }\end{aligned}$$
As $\left(\frac{\partial u}{\partial y}\right)_{y=0}$ is positive.
Hence flow will not separate or flow will remain attached with the surface.
$2^{nd}$ Velocity Profile
$$
\begin{aligned}
\frac{u}{U} &=2\left(\frac{y}{\delta}\right)^{2}-\left(\frac{y}{\delta}\right)^{3} \\
u &=2 U\left(\frac{y}{\delta}\right)^{2}-U\left(\frac{y}{\delta}\right)^{3} \end{aligned} $$
Differentiating w.r.t. $y$,
$$
\frac{\partial u}{\partial y}=4 U \left(\frac{y}{\delta}\right) \times \frac{1}{\delta}-3U \left(\frac{y}{\delta}\right)^{2} \times \frac{1}{\delta}
$$
At $y=0,$
$$\begin{aligned}\left(\frac{\partial u}{\partial y}\right)_{y=0} &=4 U \times \left(\frac{0}{\delta}\right) \frac{1}{\delta}-3U \times \left(\frac{0}{\delta}\right)^{2} \frac{1}{\delta}\\
&=0
\end{aligned}$$
As $\left(\frac{\partial u}{\partial y}\right)_{N=0}=0$, the flow is on the verge of separation.
$3^{rd}$ Velocity Proflle
$$
\begin{aligned}
\frac{u}{U} &=-2\left(\frac{y}{\delta}\right)+\left(\frac{y}{\delta}\right)^{2} \\
u &=-2 U\left(\frac{y}{\delta}\right)+U\left(\frac{y}{\delta}\right)^{2}\end{aligned}
$$
Differentiating w.r.t. $y$,
$$\frac{\partial u}{\partial y} =-2 U\left(\frac{1}{\delta}\right)+2 U\left(\frac{y}{\delta}\right) \times \frac{1}{\delta}$$
at $y=0,$
$$\begin{aligned}\left(\frac{\partial u}{\partial y}\right)_{y=0} &=-\frac{2 U}{\delta}+2 U\left(\frac{\partial}{\delta}\right) \times \frac{1}{\delta} \\
&=-\frac{2 U}{\delta}\end{aligned}$$
As $\left(\frac{\partial u}{\partial y}\right)_{y=0}$ is negative the flow has separated.