Given : m = 8 kg
Since 28 oscillations are made in 16 seconds, therefore frequency of free vibrations, fn = 28/16 = 1.75 and
$$
\begin{array}{r}
\omega_{n}=2 \pi \times f_{n}=2 \pi \times 1.75 \\
=11 \mathrm{rad} / \mathrm{s}
\end{array}
$$
1.Stiffness of the spring
Let s = stiffness of the spring in N/m.
We know that
$$
\begin{aligned}
\left(\omega_{n}\right)^{2}=& s / m \text { or } s=\left(\omega_{n}\right)^{2} m \\
&=(11)^{2} 8=968 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$
2.Logarithmic decrement
Let x1 = Initial amplitude, x6 = Final amplitude after five oscillations = 0.3 x1 (Given)
$$
\begin{gathered}
\frac{x_{1}}{x_{6}}=\frac{x_{1}}{x_{2}} \times \frac{x_{2}}{x_{3}} \times \frac{x_{3}}{x_{4}} \times \frac{x_{4}}{x_{5}} \times \frac{x_{5}}{x_{6}}=\left(\frac{x_{1}}{x_{2}}\right)^{5} \\
\ldots\left[\because \frac{x_{1}}{x_{2}}=\frac{x_{2}}{x_{3}}=\frac{x_{3}}{x_{4}}=\frac{x_{4}}{x_{5}}=\frac{x_{5}}{x_{6}}\right]
\end{gathered}
$$
$$
\begin{gathered}
\frac{x_{1}}{x_{2}}=\left(\frac{x_{1}}{x_{6}}\right)^{1 / 5}=\left(\frac{x_{1}}{0.3 x_{1}}\right)^{1 / 5} \\
=1.27
\end{gathered}
$$
$$
\delta=\log _{e}\left(\frac{x_{1}}{x_{2}}\right)=\log _{e} 1.27=0.24
$$
3. Damping factor
Let c = damping coefficient for the actual system, and cc = Damping coefficient for the critical damped system. We know that logarithmic decrement (δ)
$$
0.24=\frac{a \times 2 \pi}{\sqrt{\left(\omega_{n}\right)^{2}-a^{2}}}=\frac{a \times 2 \pi}{\sqrt{(11)^{2}-a^{2}}}
$$
$$
0.0576=\frac{a^{2} \times 39.5}{121-a^{2}}
$$
... (Squaring both sides)
$$
6.9696-0.0576 a^{2}=39.5 a^{2}
$$
or $a^{2}=0.17618$ or $a=0.419$
We know that
$$
\begin{aligned}
&a=c / 2 m \\
&\text { or } \begin{aligned}
c=a \times 2 m=0.419 \times 2 \times 8 \\
&=6.7 \mathrm{~N} / \mathrm{m} / \mathrm{s} \\
\text { and } \quad c_{c} &=2 \mathrm{~m} . \omega_{n}=2 \times 8 \times 11\\
&=176 \mathrm{~N} / \mathrm{m} / \mathrm{s}
\end{aligned} \\
&\therefore \text { Damping factor }=c / c_{c} \\
&=6.7 / 176=0.038
\end{aligned}
$$