written 2.7 years ago by
RakeshBhuse
• 3.2k
|
•
modified 2.7 years ago
|
Given :
$
\begin{aligned}
\text{v} =900 \space {Km}/{P h} &=\frac{900 \times 1000}{60 \times 60} \\
&= 250 \space {m} / {s} \\
\text {Pressure of a air }\left(P \right) &=8 \space {N} /{cm}^{2} \\&=8 \times 10^{4} \space{N} / {m}^{2} \\
T =15^{\circ}{C} &=15+273=288\space {K} \\
K &=1.4\\
\end{aligned}
$
Now for Adiabatic process,
The velocity of sound
$
\begin {aligned}
C &=\sqrt{K R T} \\
&=\sqrt{1.4 \times 287 \times 288} \\
&=340.17 {m} / {s} \\
\end{aligned}
$
Mach number(M)
$
\begin {aligned}
M &= \frac{v}{C}=\frac{250}{340.17} \\
M &=0.735 \\
\end{aligned}
$
Stagnation Pressure (Ps)
$
\begin {array}{I}
P_S &=P \left(1+\frac{k-1}{2} \times M^{2}\right)^{\frac{K}{K-1}} \\
&=8\times10^{4}\left(1+\frac{1.4-1}{2} \times 0.735^{2}\right)^{\frac{1.4}{1.4-1}} \\
&= 8.24 \times 10^{4} N/ m^{2} \\
\end{array}
$
Stagnation Temperature (Ts)
$
\begin {aligned}
T_{S} &=T\left(1+\frac{k-1}{2} \times M^{2}\right) \\
&=288\left(1+\frac{1.4-1}{2} \times 0.735^{2}\right) \\
&=319.12 \mathrm{K} \\
T_{S} &=46.12^{\circ} \mathrm{C}
\end{aligned}
$
Stagnation density $\left(\rho_{s}\right)$
$
\begin{aligned}
\rho_{S} &=\frac{P_{s}}{R T_{s}}=\frac{8.24 \times 10^{4}}{287 \times 319.12} \\
&=0.8995 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$