written 6.9 years ago by | modified 2.8 years ago by |
Subject: Fluid Mechanics 2
Topic: Laminar flow
Difficulty: High
written 6.9 years ago by | modified 2.8 years ago by |
Subject: Fluid Mechanics 2
Topic: Laminar flow
Difficulty: High
written 2.8 years ago by | • modified 2.8 years ago |
Given :
Specific gravity $= 0.9$ of oil
Density $= 900 $ kg/m³
d $ = 200 $ mm $ = 0.2$ m
L $= 3 $ Km $= 3000$ m
Q $= 0.015$ m³/s
Power (P) $= 7.5$ KW
$ \begin{array}{I} \eta=68 \% \end{array} $
Solution :
Let
$\begin{aligned} Q &=\text {Velocity} \times \text {Area} \\ Q &=\text { VA } \end{aligned}$
$$ \begin {aligned} V &=\frac{Q}{A}=\frac{0.015}{\frac{\pi}{4} \times(0.2)^{2}}=0.4775 \mathrm{~m} / \mathrm{s} . \end{aligned} $$
$$ \begin{aligned} P &=\eta \times w \times h_{f} \\ P &=n \times(\rho g Q) \times \frac{32 \mu V L}{\rho g d^{2}} \\ \mu &=\frac{P \times d^{2} \times Q}{\eta \times Q \times 32 \mathrm{VL}} \\ &=\frac{7.5 \times (10.2)^{2} \times 10^{3}}{0.68 \times 0.4775 \times 32 \times 0.015 \times 3000} \\ &=0.6416 \mathrm{N s} / \mathrm{m}^{2}\\ Now\\ R_{e} &=\frac{\rho V d}{\mu} \\ R_{e} &=\frac{900 \times 0.4775 \times 0.2}{0.6416} \\ &={133.96} \end{aligned} $$
Hence flow is Laminar flow.