written 6.9 years ago by | modified 2.7 years ago by |
written 2.7 years ago by | • modified 2.7 years ago |
Given :
$u_{\text {max }}=2 \mathrm{~m}/\mathrm{s}$
$u_{\text {avg }}=\frac{2}{3}u_{\text {max }}=1.334 \mathrm{~m} / \mathrm{s}$
$D=100mm$
$\mu =20 Poise = 2Pa.sec$
(1 Poise = 0.1 Pa.sec = 0.1 Ns/m²)
$\space $
(a) Discharge per unit width
$\begin {aligned} Q &= Area \times Velocity_{avg}\\ &=D \times 1 \times u_{avg}\\ &= 0.1 \times 1 \times 1.334 \\ &=0.1334 \mathrm{~m} / \mathrm{s} / \mathrm{m} width \end{aligned}$
(b) Shear stress at the plate:
$ \begin {aligned} u_{avg} &=( \frac{D^{2}} {12 \mu}) (\frac{-\partial p}{ \partial x})\\ (\frac {-\partial \mathrm{p}}{ \partial \mathrm{x}}) &=\frac{12 \mu \mathrm{u}_{\mathrm{avg}}} {\mathrm{D}^{2}}\\ &=\frac{12 \times 2\times 1.334} {\mathrm{0.1}^{2}}\\ &=3202 \mathrm{~N} / \mathrm{m}^{2} / \mathrm{m}\\ \space \\ \tau_{0} &=(\frac{-\partial p }{ \partial x}) (\frac{D}{ 2})\\ \left(\tau_{0}\right) &=160 \mathrm{~N} / \mathrm{m}^{2} \end{aligned} $
(c) Pressure difference between two points 20(L) m apart:
$ \begin {aligned}\Delta \mathrm{p} &=\left[\frac{12 \mu u_{avg}}{\mathrm{D}^{2}}\right] \mathrm{L} \\ &=\frac{12 \times 2\times 1.334}{\mathrm{0.1}^{2}} \times 20\\ &=64032 \mathrm{~N} / \mathrm{m}^{2} \end{aligned}$
(d) Velocity gradient at the plates:
$ \begin {aligned} \tau_{0} &=\mu (\frac{du}{dy})_{y=0}\\ (\frac{du}{dy})_{y=0} &=\frac{\tau_{0}}{\mu}=\frac{160 }{2}=80 / \mathrm{s} \end{aligned}$
(e) Velocity at 20 mm from plates:
$ \begin {aligned} u(at \space Y=20 mm) &=\frac{1}{2 \mu}(\frac {-\partial \mathrm{p}}{ \partial \mathrm{x}})(DY-{Y}^{2}) \\ &=\frac{1}{2 \times 2}(3202)(0.1 \times 0.02-{0.02}^{2}) \\ &=1.28 \mathrm{~m} / \mathrm{s} \end{aligned}$