Velocity of air,
$V_0\ =\ 1000\ km/hr\ =\ \frac{1000\ \times 1000}{60\ \times 60} \ = 277.78\ m/s$
Temperature of air,
$T_0\ =\ 47\ +\ 273\ =\ 320\ K$
Atmospheric pressure,
$p_{atm} = 98.1 \;kN/m^2$
Pressure of air (static),
$p_0 = 98.1 -9.81=88.29 \;kN/m^2 \\ R=287 \;J/kg \;K \\ γ = 1.4$
Sonic velocity,
$C_0 = \sqrt{γ RT_0} = \sqrt{1.4 \times 287 \times 320} = 358.6 \;m/s$
Mach number,
$M_0 = \frac{V_0}{C_0} = \frac{277.78}{358.6} = 0.7746$
Stagnation pressure, ps :
The stagnation pressure is given by,
$p_s=p_0[1 +(\frac{γ-1}{2}M_0^2)]^{γ/(γ-1)} \\ p_s = 88.29[1 +(\frac{1.4-1}{2} \times 0.7746^2)]^{1.4/(1.4-1)} \\ = 88.29(1.12)^{3.5} = 131.27 \;kN/m^2$
Stagnation temperature, Ts :
$T_s =T_0[1 +(\frac{γ-1}{2})M_0^2] \\ T_s = 320[1 +(\frac{1.4-1}{2}) \times 0.7746^2] = 358.4 \;K \;or \;85.4 \;°C$
Stagnation density, ρs :
$ρ_s = \frac{p_s}{RT_s} = \frac{131.27 \times 10^3}{287 \times 358.4} = 1.276 \;kg/m^3$