written 6.9 years ago by | modified 4.5 years ago by |
If the velocity distribution in a laminar boundary layer on a flat plate is
$\frac{\upsilon}{U}=a+b(\frac{y}{\delta})+c(\frac{y}{\delta})^2+d(\frac{y}{\delta})^3$
written 6.9 years ago by | modified 4.5 years ago by |
$\frac{\upsilon}{U}=a+b(\frac{y}{\delta})+c(\frac{y}{\delta})^2+d(\frac{y}{\delta})^3$
written 5.9 years ago by |
Consider the velocity distribution in a laminar boundary layer over a flat plate,
We know that at the surface of the plate y=0 ⇒ u=0 due to no slip condition.
Substituting in the above equation,
$\frac{0}{U}=a+b(\frac{0}{δ})+c(\frac{0}{δ})^2+d(\frac{0}{δ})^3$
$0=a+b(0)+c(0)^2+d(0)^3$
∴a=0
∴$\frac{u}{U}=b(\frac{y}{δ})+c(\frac{y}{δ})^2+d(\frac{y}{δ}^3$
Now, At the boundary layer thickness, we know that $y=δ⇒u=U,\frac{du}{dy}$=0 and $\frac{d^2 u}{dy^2}$=0
Substituting $y=δ$⇒u=U
$\frac{U}{U}=b(\frac{δ}{δ})+c(\frac{δ}{δ})^2+d(\frac{δ}{δ})^3$
1=b+c+d … (1)
Substituting y=$δ⇒\frac{du}{dy}$=0
$\frac{du}{dy}=U[b(\frac{1}{δ})+c(\frac{2y}{δ^2})+d(\frac{3y^2}{δ^3})]$
∴$0=U[b(\frac{1}{δ})+c(\frac{2δ}{δ^2})+d(\frac{3δ^2}{δ^3})]$
∴0=b+2c+3d … (2)
Substituting y=$δ⇒\frac{d^2 u}{dy^2}=0$
$\frac{d^2 u}{dy^2}=U[c(\frac{2}{δ^2})+d(\frac{6y}{δ^3})]$
∴0=$U[c(\frac{2}{δ^2})+d(\frac{6}{δ^3})]$
∴0=2c+6d … (3)
Solving equations (1), (2) and (3) simultaneously,
b=3
c=-3
d=1
Hence the velocity distribution equation is given as,
$\frac{u}{U}=3(\frac{y}{δ})-3(\frac{y}{δ})^2+(\frac{y}{δ})^3$