Solution :
The velocity profile is $\dfrac v U=sin\left(\dfrac \pi 2 \dfrac y \delta\right)$
$$
\begin{aligned}
\frac{\tau_{0}}{\rho U^{2}} &=\frac{\partial}{\partial x}\left[\int_{0}^{\delta} \frac{v}{U}\left(1-\frac{v}{U}\right) d y\right]\\
&=\frac{\partial}{\partial x}\left[\int_{0}^{\delta} \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right)\left[1-\sin \left(\frac{\pi}{2} \frac{y}{\delta}\right)\right] d y\right] \\
&=\frac{\partial}{\partial x}\left[\int_{0}^{\delta}\left[\sin \left(\frac{\pi}{2} \frac{y}{\delta}\right)-\sin ^{2}\left(\frac{\pi}{2} \frac{y}{\delta}\right)\right] d y\right] \\
&=\left[\frac{\partial}{\partial x}\left[\frac{-\cos \frac{\pi y}{2 \delta}}{\frac{\pi}{2 \delta}}\right]-\left[\frac{\frac{\pi y}{2 \delta} \times \frac{1}{2}}{\frac{\pi}{2 \delta}}-\frac{\sin 2\left(\frac{\pi}{2} \frac{y}{\delta}\right)}{4 \times \frac{\pi}{2 \delta}}\right]\right]_{0}^{\delta} \\
&=\frac{\partial}{\partial x}\left[\left(\frac{-\cos \frac{\pi}{2} \frac{\delta}{\delta}}{\frac{\pi}{2 \delta}}+\frac{\cos \frac{\pi}{2} \times \frac{0}{\delta}}{\frac{\pi}{2 \delta}}\right)-\left[\frac{\frac{\pi}{2} \frac{\delta}{\delta} \times \frac{1}{2}}{\frac{\pi}{2 \delta}}-0\right]\right] \\
&=\frac{\partial}{\partial x}\left[\left(0+\frac{1}{\frac{\pi}{2 \delta}}\right)-\frac{\left(\frac{\pi}{4}\right)}{\frac{\pi}{2 \delta}}\right]=\frac{\partial}{\partial x}\left[\frac{2 \delta}{\pi}-\frac{\pi}{4} \times \frac{2 \delta}{\pi}\right]\\
&=\frac{\partial}{\partial x}\left[\frac{2 \delta}{\pi}-\frac{\delta}{2}\right]\\
&=\frac{\partial}{\partial x}\left[\frac{4-\pi}{2 \pi}\right] \delta \\
&=\left(\frac{4-\pi}{2 \pi}\right) \frac{\partial \delta}{\partial x}\\
\therefore \quad \tau_{0} &=\left(\frac{4-\pi}{2 \pi}\right) p U^{2} \frac{\partial \delta}{\partial x} .....(i)
\end{aligned}
$$
$\tau_{0}$ is also equal $=\mu\left(\frac{d v}{d y}\right)_{a t y=0}$
But
$$
\begin{aligned}
v &=U \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right) \\
\left(\frac{d v}{d y}\right) &=U \cos \left(\frac{\pi}{2} \frac{y}{\delta}\right) \times \frac{\pi}{2 \delta} \\
\left(\frac{d v}{d y}\right)_{y=0} &=U \times \frac{\pi}{2 \delta} \cos \left(\frac{\pi}{2} \times \frac{0}{\delta}\right)=\frac{U \pi}{28}
\end{aligned}
$$
$$\therefore \quad \tau_{0}=\mu\left(\frac{\partial v}{\partial y}\right)_{y=0}=\frac{\mu U \pi}{2 \delta} .....(ii)$$
Equating the two values $\tau_{0}$ given by equations (i) and (ii)
$$\begin{aligned}
\left(\frac{4-\pi}{2 \pi}\right) \rho U^{2} \frac{\partial \delta}{\partial x} &=\frac{\mu U \pi}{2 \delta} \Rightarrow \delta \partial \delta=\frac{\mu U \pi}{2} \times \frac{2 \pi}{4-\pi} \times \frac{1}{\rho U^{2}} \partial x \\
\therefore \quad \delta \partial \delta &=\frac{\pi^{2}}{(4-\pi)} \frac{\mu U}{\rho U^{2}}.\partial x \\
&=11.4975 \frac{\mu}{\rho U} \partial x
\end{aligned}$$
Integrating, we get $$\quad \frac{\delta^{2}}{2}=11.4975 \frac{\mu}{\rho U} x+C$$
At $x=0,\delta =0$ and hence $C=0$
$$
\begin{aligned}
\frac{\delta^{2}}{2} &=11.4975 \frac{\mu}{\rho U} x\\
\delta &=\sqrt{2 \times 11.4975 \frac{\mu}{\rho U} x}=4.795 \sqrt{\frac{\mu}{\rho U}} \times \\
&=4.795 \sqrt{\frac{\mu}{\rho U x}}\\
&=4.795 \sqrt{\frac{\mu}{\rho U x}} \times x \\
&=\frac{4.795 x}{\sqrt{R_{e}}} .....(iii)
\end{aligned}
$$
(ii) Shear Stress $\left(\tau_{0}\right)$
From equation (ii)
$$
\begin{aligned}
\tau_{0} &=\frac{\mu U \pi}{2 \delta}=\frac{\mu U \pi}{\frac{2 \times 4.795 x}{\sqrt{R_{e}}}}=\frac{\mu U \pi \sqrt{R_{e}}}{2 \times 4.795 x} \\
&=\frac{\pi}{2 \times 4.795} \frac{\mu U}{x} \sqrt{R_{e}}\\
&=0.327 \frac{\mu U}{x} \sqrt{R_{e}}
\end{aligned}
$$
(iii) Drag force $\left({F}_{{b}}\right)$
on one side of the plate is given by
$$
\begin{aligned}
F_{D}=\int_{0}^{L} \tau_{0} \times b \times d x &=\int_{0}^{L} 0.327 \frac{\mu U}{x} \sqrt{R_{e}} \times b \times d x \\
&=0.327 \mu U \times b \int_{0}^{L} \frac{1}{x} \sqrt{\frac{\rho U x}{\mu}} d x \\
&=0.327 \mu U \times b \times \sqrt{\frac{\rho U}{\mu}} \int_{0}^{L} x^{-12} d x \\
&=0.327 \mu U \times b \times \sqrt{\frac{\rho U}{\mu}}\left[\frac{x^{1 / 2}}{\frac{1}{2}}\right]_{0}^{L} \\
&=0.327 \times 2 \times \mu U \times b \sqrt{\frac{\rho U}{\mu}} \times \sqrt{L} \\
&=0.655 \times \mu U \times b \times \sqrt{\frac{\rho U L}{\mu}}
\end{aligned}
$$
(iv) Co-efficient of drag, $C_{D}$
$$
\begin{aligned}
C_{D} &=\frac{F_{D}}{\frac{1}{2} \rho A U^{2}}, \text { where } A=b \times L \\
C_{D} &=\frac{0.655 \times \mu U \times b \times \sqrt{\frac{\rho U L}{\mu}}}{\frac{1}{2} \rho U^{2} \times b \times L} \\
&=0.655 \times 2 \times \frac{\mu}{\rho U L} \times \sqrt{\frac{\rho U L}{\mu}}\\
&=1.31×\frac{1}{\sqrt{\rho UL}}=\frac{1.31}{\sqrt{R_e}}
\end{aligned}
$$