Given:
For the three pipes in parallel connected between two points
Q ̇=$0.30 m^3/s$ (Total discharge through the system)
To Find:
$Q ̇_1,Q ̇_2 and Q ̇_3$ (Discharge through each pipe)
$h_l$ (Head loss between the junctions)
Consider the given configuration of three pipes in parallel connected between two points
Now, For pipes in parallel
Q ̇=$Q ̇_1+Q ̇_2+Q ̇_3$
and
$h_l=h_f1=h_f2=h_f3$
Now,
Friction loss through a pipe is given by,
$h_f=\frac{flv^2}{2gd}$
(Assuming the Coefficient of friction values given,are the Darcy Weisbach friction factor)
∴$4h_l=(\frac{flv^2}{2gd})_{1}=(\frac{flv^2}{2gd})_{2}=(\frac{flv^2}{2gd})_{3}$
Now
,
$Q ̇_1=(vA)_{1}$
$Q ̇_2=(vA)_{2}$and
$Q ̇_3=(vA)_{3}$
∴$h_l=(\frac{flQ ̇^2}{2gdA^2})_{1}=(\frac{flQ ̇^2}{2gdA^2})_{2}=(\frac{flQ ̇^2}{2gdA^2})_{3}$
Substituting in the above equation,
∴$h_l=\frac{Q ̇_1^2}{2g} (\frac{0.02(1000)}{(0.2(\frac{π}{4} 0.2^2)^2})=\frac{Q ̇_2^2}{2g} (\frac{0.015(1200)}{0.3(\frac{π}{4} 0.3^2)^2})=\frac{Q ̇_3^2}{2g} (\frac{0.02(800)}{(0.15(\frac{π}{4}0.15^2)^2})$
∴$Q ̇_1^2=\frac{2gh_l}{101321.18}$
∴$Q ̇_1=\sqrt{\frac{2gh_l}{101321.18}}$
Similarly,
∴$Q ̇_2^2=\frac{2gh_l}{12008.44}$
∴$Q ̇_2=\sqrt{\frac{2gh_l}{12008.44}}$
and
$∴Q ̇_3^2=\frac{2gh_l}{341573.31}$
$∴Q ̇_3=\sqrt{\frac{2gh_l}{341573.31}}$
Now,
$Q ̇=0.30=Q ̇_1+Q ̇_2+Q ̇_3$
Substituting in above equation,
$Q ̇=0.30=\sqrt{\frac{2gh_l}{101321.18}}+\sqrt{\frac{2gh_l}{12008.44}}+\sqrt{\frac{2gh_l}{341573.31}}$
Solving for $h_l$
∴$\sqrt{h_l } \{\sqrt{\frac{2g}{101321.18}}+\sqrt{\frac{2g}{12008.44}}+\sqrt{\frac{2g}{341573.31}}\}=0.30$
∴$\sqrt{h_l} \{\sqrt{\frac{2g}{101321.18}}+\sqrt{\frac{2g}{12008.44}}+\sqrt{\frac{2g}{341573.31}}\}=0.30$
∴$\sqrt{h_l} {0.06192}=0.30$
∴$\sqrt{h_l }$=4.8453
$h_l$=23.4772 m of liquid column
…this is the head loss between the junctions.
Now,
∴$Q ̇_1=\sqrt{\frac{2gh_l}{101321.18}}=0.06743 m^3/s$
∴$Q ̇_2=\sqrt{\frac{2gh_l}{12008.44}}=0.1959 m^3/s$
and
∴$Q ̇_3=\sqrt{\frac{2gh_l}{341573.31}}=0.03672 m^3/s$
…which are the required discharges through each pipe.