written 2.6 years ago by
Chandan15
• 300
|
•
modified 2.6 years ago
|
Given Data,
$$
\begin{array}{l}
K_{L}=0.6 \\
f=0.022
\end{array}
$$
Applying Energy Equation between 1 and 2 , we get
$$
\frac{P_{1} }{\rho g}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{P_{2}}{\rho g}+\frac{v_{2}^{2}}{2 g}+z_{2}+h_{f}
$$
$P_{1}=P_{2}=P_{atm}$ Thus, $z_{1}-z_{2}=h_{f}=18 \mathrm{~m}$
$$
\begin{array}{l}
\\
\Rightarrow 18=\frac{0.5 v_{1}^{2}}{2 g}+\frac{f_{1} L_{1} v_{1}^{2}}{d_{1} \times 2g}+\frac{K_{2} V_{1}^{2}}{2g}+\frac{f_{2} L_{2} V_{2}^{2}}{d_{2} \times 2 g}+\frac{V_{2}^{2}}{2 g}
\end{array}
$$
Applying continuity principal,
$\begin{aligned} \Rightarrow \frac{\pi}{4}(0.04)^{2} \times v_{1} &=\frac{\pi}{4} \times(0.065)^{2} \times v_{2} . \\ V_{1} &=2.64 V_{2} \end{aligned}$
$\Rightarrow \quad 18=\frac{0.5 \times\left(2.64 V_{2}^{2}\right.}{2g}+\frac{0.022 \times 20 \times\left(2.64 V_{2}\right)^{2}}{2 g \times 0.04}+\frac{0.6 \times\left(2.64V_{2})^{2}\right.}{2g}$
$+\frac{0.022 \times 25 \times v_{2}^{2}}{2 g \times 0.065}+\frac{V_{2}{ }^{2}}{2 g}$
$\Rightarrow 18=4.81 \mathrm{~V}_{2}{ }^{2}$
$\Rightarrow \quad V_{2}=1.934 \mathrm{~m} / \mathrm{s}$
Discharge, $Q_{2}=A_{2} V_{2}$
$=\frac{\pi}{4}(0.065)^{2} \times 1.934$
$Q=0.00642 \mathrm{~m}^{3} / \mathrm{s}$