written 6.9 years ago by | modified 4.6 years ago by |
written 6.0 years ago by | • modified 6.0 years ago |
Given: $D_1$=30 cm (Inlet diameter of pipe bend)
$D_2$=15 cm (Outlet diameter of pipe bend)
$θ=120°$ (Obtuse angle between inlet and outlet axis of pipe bend in a vertical plane)
$Z_1-Z_2$=1.5 m (Elevation difference between inlet and outlet)
$V=0.9 m^3$ (Volume of water in the bend)
Q ̇=250 lts/s (Discharge through the pipe)
$P_1=0.15 N/mm^2=0.15∙10^6 N/m^2$ (Inlet Pressure)
Neglect friction⇒$h_l$=0 (Head loss due to friction in the pipe bend)
To Find:
R(Net force on the bend in magnitude and direction)
Sol:
Consider the Control Volume (CV) consisting of the fluid in the pipe bend,
and
$v_2=\frac{Q }{A_2} =\frac{0.250}{0.01767}$=14.1483 m/s
Now, Pressure at outlet section is unknown. We apply Bernoulli’s Principle between the inlet and outlet section
$P_1/ρg+(v_1^2)/2g+Z_1=P_2/ρg+(v_2^2)/2g+Z_2+h_l$
Substituting in the above equation,
$\frac{0.15∙10^{6}}{9810}+\frac{3.5366^2}{2g}+Z_1-Z_2=\frac{P_2}{ρg}+\frac{14.1483^{2}}{2g}$+0
Since, ρ=$1000 kg/m^3$ (Density of water) and $g=9.81 m/s^2$ (acceleration due to gravity)
15.2905+0.6375+1.5=$\frac{P_2}{9810}$+10.2026+0
$\frac{P_2}{9810}$=7.2254
$P_2=70.882 kN/m^2$
Assuming direction of force on the fluid CV
Substituting in the above equation, ∴$0.15∙10^6 (0.07069)+70.882∙10^3 (0.01767)cos60^{\circ}+R_x=1000(0.25)[-14.1483 cos60^{\circ}-3.5366]$
∴$11229.74+R_x=-2653.6875$
∴$R_x=-13882.43 N (→)$
∴$R_x=13.882 kN (←)$(force on the fluid)
∴$R_x=13.882 kN (→)$(force on the pipe bend)
Along the Y axis, the momentum equation is given by, $(↑)$direction taken as positive
$∑F_y =(m ̇v)_outflow-(m ̇v)_inflow$
∴$∑F_y =m ̇_2 v_2y-m ̇_1 v_1y$
∴$∑F_x =m ̇[v_2x-v_1x ]$
∴$0+P_2 A_2 sin60^{\circ}+ρVg+R_y=ρQ ̇[-v_2 sin60^{\circ}-0]$
where, $ρVg$=Weight of fluid in the pipe bend acting vertically downwards Substituting in the above equation,
∴$70.882∙10^3 (0.01767) sin60^{\circ}-9810(0.9)+R_y=1000(0.25)[-14.1483 sin〖60^{\corc}]$
∴-7744.32+R_y=-3063.2
∴$R_y=4681.12 N (↑)$
∴$R_y=4.681 kN (↑)$
∴$R_y=4.681 kN (↓)$(force on the pipe bend)
Hence, Resultant force on the pipe bend=R=$\sqrt{(R_x^2+R_y^2)}$
∴R=$\sqrt{13.882^{2}+4.681^{2}}$=14.65 kN
and direction
$ϕ=tan^{-1}(\frac{R_y}{R_x })=18.634°$ (↘clockwise from horizontal)