1
1.2kviews
Find the value of a for which the vectors $3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\hat{i} + \hat{aj} + 3\hat{k}$ are perpendicular
1 Answer
written 3.2 years ago by | • modified 3.2 years ago |
Let $ \overrightarrow a$ = 3$ \hat i $+2$\hat j $+9$\hat k $ and $ \overrightarrow b$ =$ \hat i $+$\hat aj$+3$\hat k$.
For two vectors to be perpendicular, $ \overrightarrow a$ ⊥ $ \overrightarrow b$ = $ \overrightarrow a$.$ \overrightarrow b$=0
(3$ \hat i $+2$ \hat j $+9$\hat k$). ($\hat i$+a$\hat j$+3$\hat k$) =0
3+2a+27=0
30+2a=0
2a = -30
a= -15