written 2.8 years ago by |
Solution:
The radii of Newton's light ring with a constant radius of curvature of the lens is given by
$$ r_{k}=\sqrt{\frac{(k-0.5) \lambda R}{n}} $$
where,
$r=$ radius of the ring
$k=$ newton's constant
$\lambda=$ wavelength of a ray
$\mathrm{R}=$ radius of curvature
$\mathrm{n}=$ refractive index
Now, the radius of the 10 th ring having refractive index $n 1$ is given by,
$ r_{1}=\sqrt{\frac{(10-0.5) \lambda R}{n_{1}}} \\ $
$ 1.40=\sqrt{\frac{(10-0.5) \lambda R}{n_{1}}} \\ $
Now, the radius of the 10 th ring having refractive index $n 2$ is given by,
$$ \begin{aligned} &r_{2}=\sqrt{\frac{(k-0.5) \lambda R}{n_{2}}} \\\\ &1.23=\sqrt{\frac{(10-0.5) \lambda R}{n_{2}}} \end{aligned} \\ $$
Divide eq (1) by eq (2),
$$ \frac{1.40}{1.23}=\sqrt{\frac{n_{2}}{n_{1}}} \\ $$
but $\mathrm{n} 1=1 \\$ $$ \therefore n 2=1.22 $$
$ \therefore$ The refractive index of the liquid is $1.22 $