Design for hub:
Mean torque transmitted by the shaft,
$T_mean=\frac{P*60}{2 \pi N}=\frac{15*a0^3*60}{2 \pi 210}=682.09N-m=682.09*10^3 N-mm$
Maximum torque transmitted ,
$T_max=1.24*T_mean=845.79*10^3 N-mm$
$T_max=\frac{pi}{16}8\tau_s8d^2$
$d=47.57=50mm$
Outer diameter and length of hub,
D=2d=2*50=100mm
L-1.5d=1.5850=75mm
Check the induced shear stress for the hub material which is cast iron, by considering it as a hollow shaft.
$T_max=\frac{\pi}{16}*\tau_c*\frac{D^4-d^4}{D}$
$845.79*10^3=\frac{\pi}{16}*\tau_c*\frac{100^4-50^4}{100}$
$\tau_c=4.59MPa\lt15MPa$
Design for key:
Width and thickness are equal i.e
$w=t=d/4=50/4=12.5 or 14mm$
Take length of key equal to length of hub
$l=L=75mm$
$T_max=l*w*\tau_k*\frac{d}{2}$
$845.79*10^3=75*14*\tau_k*\frac{50}{2}$
$\tau_k=32.20 MPa$
$\sigma_c=2\tau_k=2*32.20=64.40MPa$
Design for flange:
The thickness for the flange is taken as 0.5*d
Therefore,
$t_f=0.5*50=25mm$
$T_max=\frac{\pi D^2}{16}*\tau_c*\tau_f$
$845.79*10^3=\frac{\pi 100^2}{16}*\tau_c*25$
$t_c=17.23\lt15MPa$
Design for bolts:
Let $d_1$=Nominal diameter of bolts
Number of bolts, n=4........ d=50mm
Pitch circle diameter of bolts,
D_1=3d=3*50=150mm
The bolts are subjected to sheer stress due to the torque transmitted.
$T_max=\frac{\pi d_1^2}{16}*\tau_b*n*\frac{d_1}{2}$
$845.79*10^3=\frac{\pi d_1^2}{16}*35*4*\frac{150}{2}$
$d_1=20.25mm or 22mm$
Outer diameter of the flange,
$D_2=4d=4*50=200mm$
Thickness of the protective circumferential flange,
$t_f$=$0.25d=0.25*50=12.5mm$