0
5.1kviews
Find the diameter of the rod using Soderberg criteria and assuming following data.

The circular rod is subjected to 700KN tensile to 300KN compressive varying axial load. Find the diameter of the rod using Soderberg criteria and assuming following data. Endurance limit = 280Mpa, tensile yield strength = 350Mpa, factor of safety = 2, correction factor for loading = 0.7, surface factor = 0.8, size factor = 0.85, stress concentration factor = 1.


Subject: Machine Design -I

Topic: Basic properties of Machine design and theories of failure

Difficulty: High

1 Answer
0
559views

Area =

$A=\frac{\pi}{4}*d^2=0.7854d^2 mm^2$

Mean or average load=

$W_m=\frac{W_max+W_min}{2}=500kN$

Mean stress=

$\sigma_m=\frac{W_m}{A}=\frac{636618.28}{d^2}N/mm^2$

Variable load=

$W_v=\frac{W_max-W_min}{2}=200kN$

Variable stress=

$\sigma_v=\frac{W_v}{A}=\frac{254647.31}{d^2} N/mm^2$

Endurance limit in reverse axial loading=

$\sigma_ea=\sigma_e*K_a=0.5\sigma_u*0.7=0.35\sigma_u$

$0.35*560=196 N/mm^2$

By Sodenberg's formula=

$\frac{1}{FS}=\frac{\sigma_m}{\sigma_y}+\frac{\sigma_v*K_f}{\sigma_ea*K_sur*K_sz}$

$\frac{1}{2}=$ $\frac{636618.28}{d^2*350}+\frac{254647.31*1}{d^2*196*0.8*0.85}=\frac{3729.51}{d^2}$

$d=86.36 \space \space or \space \space 88mm$

Please log in to add an answer.