written 6.9 years ago by | • modified 6.6 years ago |
Subject: Machine Design -I
Topic: Curved beams and Thin cylinder
Difficulty: High
written 6.9 years ago by | • modified 6.6 years ago |
Subject: Machine Design -I
Topic: Curved beams and Thin cylinder
Difficulty: High
written 6.6 years ago by |
Step 1: Calculation of permissible tensile stress:
$\tau_max=\frac{S_ut}{fs}=\frac{200}{3}=66.67N/mm^2$
Step 2: Calculation of eccentricity (e):
b_i=3t
h=3t
R_i=2t
R_o=5t
t_i=t
t=0.75t
$R_N=\frac{t_i(b_i-t)+th}{(b_i-t)log_e(\frac{R_i+t_i}{R_i})+tlog_e\frac{R_o}{R_i}}$
$R_N=\frac{t(3t-0.75t)+0.75t(3t)}{(3t-0.75t)log_e(\frac{2t+t}{2t})+0.75tlog_e\frac{5t}{2t}}$
$=2.8134t$
$R=R_i+\frac{0.5th^2+0.5t_i^2(b_i-t)}{th+t_i(b_i-t)}$
$R=2t+\frac{0.5*0.75t*3t^2+0.5t^2(3t-0.75t)}{0.75t*3t+t(3t-0.75t)}=3t$
$e=R-R_N=3t-2.8134t=0.1866t$
Step 3: Calculation of bending stress:
$h_i=R_N-R_i=2.8134t-2t=0.8134t$
$A=3t*t+0.75t*2t=4.5t^2 mm^2$
$M_b=100*10^3(1000+3t) N-mm$
bending stress at the inner fibre is given by,
$\sigma_bi=\frac{M_bh_i}{AeR_i}=\frac{100*10^3(1000+3t)(0.8134t)}{4.5t^2*0.1866t*2t}=\frac{100*10^3(1000+3t)(2.1795)}{4.5t^2} N/mm^2$
Step 4: Calculation of direct tensile stress
$\sigma_t=\frac{P}{A}=\frac{100*10^3}{4.5t^2} N/mm^2$
Step 5: Calculation of dimensions of cross-section
$\sigma_N+\sigma_t=\sigma_max$
$\frac{100*10^3(1000+3t)(2.1795)}{4.5t^2}+\frac{100*10^3}{4.5t^2}=66.67$
$t^3-2512.83t-726500=0$
Adding the two stresses and equating the resultant stress to permissible stress,
t=99.2mm or t=100mm