1
12kviews
The C-frame of a 100 kN capacity press is shown in Fig.2.2 The material of the frame is grey cast iron FG 200 and the factor of safety is 3. Determine the dimensions of the frame.

Subject: Machine Design -I

Topic: Curved beams and Thin cylinder

Difficulty: High

enter image description here

2 Answers
1
2.2kviews

C-frame

0
609views

Step 1: Calculation of permissible tensile stress:

$\tau_max=\frac{S_ut}{fs}=\frac{200}{3}=66.67N/mm^2$

Step 2: Calculation of eccentricity (e):

b_i=3t

h=3t

R_i=2t

R_o=5t

t_i=t

t=0.75t

$R_N=\frac{t_i(b_i-t)+th}{(b_i-t)log_e(\frac{R_i+t_i}{R_i})+tlog_e\frac{R_o}{R_i}}$

$R_N=\frac{t(3t-0.75t)+0.75t(3t)}{(3t-0.75t)log_e(\frac{2t+t}{2t})+0.75tlog_e\frac{5t}{2t}}$

$=2.8134t$

$R=R_i+\frac{0.5th^2+0.5t_i^2(b_i-t)}{th+t_i(b_i-t)}$

$R=2t+\frac{0.5*0.75t*3t^2+0.5t^2(3t-0.75t)}{0.75t*3t+t(3t-0.75t)}=3t$

$e=R-R_N=3t-2.8134t=0.1866t$

Step 3: Calculation of bending stress:

$h_i=R_N-R_i=2.8134t-2t=0.8134t$

$A=3t*t+0.75t*2t=4.5t^2 mm^2$

$M_b=100*10^3(1000+3t) N-mm$

bending stress at the inner fibre is given by,

$\sigma_bi=\frac{M_bh_i}{AeR_i}=\frac{100*10^3(1000+3t)(0.8134t)}{4.5t^2*0.1866t*2t}=\frac{100*10^3(1000+3t)(2.1795)}{4.5t^2} N/mm^2$

Step 4: Calculation of direct tensile stress

$\sigma_t=\frac{P}{A}=\frac{100*10^3}{4.5t^2} N/mm^2$

Step 5: Calculation of dimensions of cross-section

$\sigma_N+\sigma_t=\sigma_max$

$\frac{100*10^3(1000+3t)(2.1795)}{4.5t^2}+\frac{100*10^3}{4.5t^2}=66.67$

$t^3-2512.83t-726500=0$

Adding the two stresses and equating the resultant stress to permissible stress,

t=99.2mm or t=100mm

Please log in to add an answer.