written 7.0 years ago by |
From diagram in $\Delta ABD$
$F_c=R cos(\beta-\alpha)$----------------1
Also from$\Delta ACD$
$F_S=R cos[\varphi+\beta-\alpha]$
therfore R=$\frac{F_s}{cos[\Phi+\beta-\alpha]}$-----------------------2
Shear stress;$f_s=\frac{F_s}{A_s}$
therefore $F_S=f_s \times \frac{t_1\times b}{sin\Phi}$-----------------------3
Putting the value of $F_s$ from eqn.3 in eqn. 2 and then the value of R in eqn.1
$F_c=f_s \times \frac{t_1 \times b}{sin \Phi} \times \frac{1}{cos[\Phi+\beta-\alpha]} \times cos(\beta-\alpha) $
Work consumed in cutting;
$W_c=F_c \times V_c$
Now,$W_c=f_s \times \frac{t_1 \times b}{sin \Phi} \times \frac{1}{cos[\Phi+\beta-\alpha]} \times cos(\beta-\alpha) \times V_c$
All except $\varphi$ are constant and for $W_c$ to be minimum the denominator must be maximum which is a function of $\varphi$
$\frac{d}{d\Phi}$(Denominator)=0
Therefore, $sin \varphi [-sin(\varphi+\beta-\alpha)]+cos(\varphi+\beta-\alpha).cos \varphi=0$
$\therefore cos[2\Phi +\beta-\alpha]=0$
Therefore,$2\varphi+\beta-\alpha=\frac{\pi}{2}$
Hence the expression for merchant theory is derived.