written 6.9 years ago by |
Since $\beta$ is mentioned use re-model. First carry out dc analysis for Ie1 and Ie2, so all connected capacitors acts as open circuit. Hence circuit becomes,
As $\beta1=\beta2=220$, then Ie1 will be equal to Ie2
By Voltage divider rule,
$V_{R2}=\frac{R2}{R1+R2}Vcc$
$V_{R2}=\frac{2.2K}{22K+2.2K}\times15$
$V_{R2}=1.36V$
By KVL,
$V_{R2}-V_{BE}=V_{E1}$
$1.36V-0.7V=V_{E1}$
Let,$V_{BE}$=0.7V
$V_{E1}=0.663V$
$Ie1=\frac{V_{E1}}{Re1}=\frac{0.663V}{150\Omega}$
Ie1=4.424mA
As stage 1 and stage 2 are identical & value of$ \beta1=\beta2$=220
Ie1=Ie2=4.424mA
AC equivalent of the circuit becomes,
Rin (Input Resistance):
$Rin=R1||R2||\beta re$
$re=\frac{26mV}{Ie1}=\frac{26mV}{4.424mA}$
$re=5.87\Omega$
Hence, Rin becomes
$Rin=22k||2.2k||220\times5.87$
$Rin = 0.784k\Omega$
Ro(Output Resistance):
$Ro=Rc2s=1k\Omega$
Av (Voltage Gain):
$Av2=\frac{Vo}{Vo1}=\frac{-Rc2}{re}$
$Av2=\frac{-1k\Omega}{5.87\Omega}$
Av2=-170.35
$Av1=\frac{-(Rc1||Rin2)}{re}$
But, $Rin2= R3||R4||\beta re =0.784k\Omega$
$Av1=\frac{(-1k\Omega||0.784k\Omega)}{5.87\Omega}$
Av1=-74.865
So Av is obtained by multiplying Av1 and Av2,
$Av=Av1 \times Av2$
$Av = (-170.35 \times -74.865)$
Av=12753.25