written 6.9 years ago by | modified 2.8 years ago by |
Mumbai University > Electronics Engineering > Sem 4 > Discrete Electronic Circuits
Marks: 10M
written 6.9 years ago by | modified 2.8 years ago by |
Mumbai University > Electronics Engineering > Sem 4 > Discrete Electronic Circuits
Marks: 10M
written 6.9 years ago by | • modified 6.9 years ago |
Given:
$r_d = 40k\Omega$
$kn =0.4×10^{-3}$
$V_{GS(th)}=3V$
$Av=-g_m(r_d|| R_D)$
Rin=R1||R2
$Ro=r_d||R_D$
We know that,
$g_m= 2kn(V_{GSQ}-V_T)$
$g_m= 2×0.4×10^{-3}(V_{GSQ}-3) $……………..(1)
To find $g_m and V_{GSQ}$ we have to perform DC analysis, all the coupling capacitor acts as open circuit, as shown in Figure 2:
$I_{DS}=kn(V_{GS}-V_T)^2$
$I_{DS}=0.4\times10^{-3}(V_{GS}-3)^2$----------------(2)
But voltage divider biasing equation is,
$V_{R2}-V_{GS}-(I_{DS}\times R_S)=0$
$V_{GS}=V_{R2}-(I_{DS}\times1.2K\Omega)$----------------(3)
Using Voltage divider rule,
$V_{R2}=V_{GS}=\frac {V_{DD}\times{R_2}}{R1+R2}$
=$\frac {30\times10M\Omega}{10M\Omega+40M\Omega}$
=6V
Substitute in equation (3),
$V_{GS}=6-{(I_{DS}\times1.2K\Omega)}$------------------(4)
Put equation (4) in (2),
$I_{DS}=0.4\times10^{-3}(6-{(I_{DS}\times1.2K\Omega)}-3)^2$
$I_{DS}=0.4\times10^{-3}(3-{I_{DS}\times1.2K\Omega})^2$
Solving above equation we get two values of $I_{DS}$,
$I_{DS}=5.625mA or I_{DS}$=1.11mA
$I_{DS}=5.625mA$ | $I_{DS}=1.11mA$ |
---|---|
$V_{GS}=6-(I_{DS} \times1.2K \Omega)\\ =6-(5.625mA \times1.2K \Omega)\\ =-0.75V$ | $V_{GS}=6-(I_{DS} \times1.2K\Omega)\\ =6-(1.11mA \times1.2K \Omega)\\ =4.668V$ |
$-0.75V\lt V_T$ | $4.668V \gt V_T$ |
Hence from above observation, select $I_{DSQ}=1.11mA because V_{GS} \gt V_T$
Substitute in equation (4),
$V_{GSQ}=4.668V$
Hence substitute $V_{GSQ}$ in equation (1),
$g_m=2\times0.4\times10^{-3}(4.668-3)$
$g_m=1.3344\times10^{-3}$
$Av=-g_m(r_d||R_D)$
$Av=-1.3344\times10^{-3}(40k\Omega||3.3K\Omega)$
Av=-4.06
Rin=R1||R2
$Rin=40M\Omega||10M\Omega$
$Rin=8M\Omega$
$Ro=r_d||R_D$
$Ro=40M\Omega||3.3K\Omega$
$Ro=3.048K\Omega$