written 6.9 years ago by |
Step 1: Circuit Diagram
Step 2: Finding Vcc
$Vcc = 2V_{CEQ}$
Vcc = 10V
Step 3: Finding RE
$V_{RE} = 10% of Vcc$
$V_{RE} = 1V$
We know that,
$V_{RE} = I_ER_E$
Finding $I_E,$
$I_C= \beta I_B$
$I_B = I_C/\beta = 5mA/100 ………………..Ic=5mA(Given)$
$I_B= 50\mu A$
$I_E = I_B+I_C$
$I_E = 5mA+50\mu A$
$I_E= 5.05mA$
$V_{RE} = I_ER_E$
$1V = 5.05mA×R_E$
$R_E=198.01\Omega$
Step 4: Finding RC
Apply KVL from Vcc to Gnd through collector emitter,
$Vcc - I_CR_C- V_{CEQ} - V_{RE}=0$
$10V – (5mA×R_C) – 5V – 1V=0$
$R_C=800 \Omega$
Step 5: Finding R1 and R2
$I1 = 10 IB$
$I1 = 500µA$
Apply KCL at base of transistor,
$I2 = I1 - I_B$
$I2 = 500\mu A-50\mu A$
$I2= 450\mu A$
Apply KVL from R2 to ground through base to emitter,
$V_{R2} – V_{BE} – V_{RE} = 0$
$V_{R2} = 0.7V + 1V $ ……………Assume $V_{BE}=0.7V$
$V_{R2}= 1.7V$
Hence,
$V_{R2} = I2 R2$
$1.7V = 450\mu A\times R2$
$R2= 3.77K\Omega$
$R1=\frac{Vcc-V_R2}{I1}$
$R1=\frac{10V-1.7V}{500\mu A}$
$R1=16.6K\Omega$
Step 6: Designed Circuit Diagram