written 7.0 years ago by | modified 2.9 years ago by |
Mumbai University > Electronics Engineering > Sem 4 > Discrete Electronic Circuits
Marks: 10M
written 7.0 years ago by | modified 2.9 years ago by |
Mumbai University > Electronics Engineering > Sem 4 > Discrete Electronic Circuits
Marks: 10M
written 7.0 years ago by | • modified 7.0 years ago |
Hence Hybrid $\pi$ equivalent circuit becomes,
Av(Voltage Gain) :
The output voltage is,
$ V_O= - (ro|| Rc||RL)g_m Vbe$…………………..(1)
The base emitter voltage Vbe, which controls the collector current, Vbe is voltage across Zi, Applying voltage divider rule,
$Vbe=\frac {R1||R2||r\pi}{R_s+R1||R2||r\pi}Vs$
Substituting value of Vbe in equation (1),
$V_o=-(ro||Rc||RL)g_m\frac{R1||R2||r\pi}{Rs+(R1||R2||r\pi)}Vs$
This gives voltage gain Rs,
$Av=\frac{Vo}{Vs}=\frac{-(R1||R2||r\pi)(ro||Rc||RL)g_m}{Rs+(R1|R2||r\pi)}$
$Av=\frac{-(R1||R2||r\pi)\times(ro||Rc||RL)g_m}{Rs+(R1||R2||r\pi)}$
Ai( Current Gain) :
Current Io flows through load resistance RL. Hence applying current divider rule at C,
$Io=\frac{-g_mVbe\times(ro||Rc)}{(ro||Rc)+RL}$----------------------------(2)
From Figure 2,
$Vbe=Ibr\pi$
Apply current divider rule at b,
$Ib=\frac{R1||R2}{r\pi+(R1||R2)}Ii$
$Vbe=\frac{(R1||R2)r\pi}{r\pi+(R1||R2)}Ii$
$Vbe=(R1||R2||r\pi)Ii$
Substitute Vbe in equation (2),
$Ai=\frac{Io}{Ii}=\frac{-g_m(R1||R2||r\pi)\times(ro||Rc)}{(ro||Rc)+RL}$
$Ai=\frac{-g_m(R1||R2||r\pi)\times(ro||Rc)}{(ro||Rc)+RL}$
Zi (Input Resistance):
Zi'=Vb/Ib
But
$Vb = Ib r\pi$
Hence,
$Zi’ = r\pi$
Zi = R1||R2||Zi’
$Zi=R1||R2||r\pi$
Zo (Output Resistance):
For Output Resistance:
Step 1: Set Vs=0V
Step 2: Open the load.
Step 3: Connect an imaginary voltage source Vs at output terminal
Hence an imaginary voltage source delivers current through parallel combination ro and Rc. Where,$ ro= V_A/ ICQ$