written 7.0 years ago by | • modified 7.0 years ago |
Mumbai University > EXTC > Sem 8 > Satellite Communication and Networks
Marks: 8M
written 7.0 years ago by | • modified 7.0 years ago |
Mumbai University > EXTC > Sem 8 > Satellite Communication and Networks
Marks: 8M
written 7.0 years ago by |
The three stages are connected in cascade.
G1 = 30 dB = 103 =1000
G2 = 10 dB = 101 =100
G3 = 15 dB = 101.5 =31.6227
The equivalent noise temperature Teq
$T_{eq}=T_{1}+\frac{T_2}{G_1} +\frac{T_3}{G_1 G_2 }$
$T_{eq}=20+\frac{360}{1000}+\frac{1000}{(1000)(100)}=20.37 K$
Equivalent noise factor of the system $F_{eq}$
$T_{eq} = (F_{eq} -1)T_o$
20.37 =$ (F_{eq} -1) 290$
Equivalent noise factor of the system $NF_{eq}$
$NF_{eq}$ = 10 log 1.0701 = 0.2942 dB
To compute noise figure of the three stages
$T_1 = (F_1 -1)T_o 20 = (F_1 -1) 290 F1 = 1.0689 Noise figure_1 = 10 log 1.0689 = 0.2893 dB$
$T_2 = (F_2 -1)To 360 = (F_2 -1)290 F2 =2.2413 Noise figure_2 = 10 log 2.2413 = 3.505 dB$
$T_3 = (F_3 -1)To 1000 = (F_3 -1)290 F3 =4.4482 Noise figure_3 = 10 log 4.4482 = 6.4818 dB$
The equivalent noise factor Feq
$F_{eq}=F_{1}+\frac{(F_2-1)}{G_1} +\frac{(F_3-1)}{G_1 G_2}$
$F_{eq}=1.0689+\frac{2.2413-1}{1000}+\frac{4.4482-1}{(1000)(100)}=1.0701$
The equivalent noise figure $NF_eq = 10log (F_{eq} =10log(1.0701) =0.2942 dB$