written 7.0 years ago by | • modified 5.7 years ago |
Mumbai University > EXTC > Sem 8 > Satellite Communication and Networks
Marks: 10M
written 7.0 years ago by | • modified 5.7 years ago |
Mumbai University > EXTC > Sem 8 > Satellite Communication and Networks
Marks: 10M
written 7.0 years ago by | • modified 6.9 years ago |
Given:
Longitude of satellite $(ϕ_s )$=$35^0 W$
brad ford UK station (54°N,2°W)
Latitude of earth station $(θ_e)$=$(54)^0N$
Longitude of earth station $(ϕ_e)$=$2^0W$
To find: Look Angles=?
Slant Range=?
Solution:
Hence
$θ_e$=$54^0$
$ϕ_e$=$-2^0$
$ϕ_s$=$-35^0$
$ϕ_es$=$ϕ_e-ϕ_s$
=-2+35
$∴ϕ_es=33^0 $ i.e earth station is to the east of subsatellite point
To calculate Azimuth angle A_z or ζ
$A=\Big|tan^-1 \Big(\frac{tan \phi_{es}}{sin (\theta_e)}\Big)\Big|$
$A=\Big|tan^-1 \Big(\frac{tan (33^0)}{sin(54^0)}\Big|$
$A=\Big|tan^{-1}(0.8027) \Big|$
$∴A=38.754^0$
Since the satellite is in the Northern hemisphere and it is west of the earth station (i.e ϕ_es>0,θ_e>0)
∴ Azimuth angle (A_z or ζ)=$180+A^0$
i.e. $A_z=180^0+38.754^0$
$A_z=218.754^0$
To calculate elevation angle (η)
$η=tan^-1\Big( \frac {cos(ψ)-σ}{sin ψ }\Big)$
$ψ=cos^-1 (cos(θ_e ) cos(ϕ_{es} ) )$
$=cos^-1(cos(54^0 ) cos(33^0 ) )$
$=cos^-1(0.4929)$
$∴ψ=60.4647^0$
$η=tan^-1\Big( \frac {cos (60.4647)-0.151}{sin (60.4647)}\Big)$
$η=tan^{-1}(0.39303)$
$η=21.456^0$
Slant Range (d):
$d=35786[1+0.4199{1-cos(ψ) }]^{0.5}Km$
$=35786[1+0.4199{1-cos(60.4647) }]^{0.5}Km$
d=35786×1.101=39411.845Km
∴Slant Range (d)=39411.845Km
Blacksburg USA (37°N, 80°W)
Longitude of satellite $(ϕ_s )=35^0 W$
Latitude of earth station $(θ_e) =37^0N$
Longitude of earth station $(ϕ_e)=80^0 W$
To find:
Look Angles=?
Slant Range=?
Solution:
Hence $θ_e=37^0$
$ϕ_e=-80^0$
$ϕ_s=-35^0$
$ϕ_es=ϕ_e-ϕ_s$
=-80+35
$∴ϕ_{es}=-45^0$ i.e earth station is to the west of subsatellite point
To calculate Azimuth angle A_z or ζ
$A=\Big|tan^-1 \Big(\frac{ tan ϕ_{es}}{sin(θ_e )} \Big) \Big|$
$A=\Big|tan^{-1}\Big(\frac{tan (-45^0)}{sin(37^0)}\Big)\Big|$
$A=|tan^{-1}(-1.6616) |$
$\therefore A= 58.959^0$
Since the satellite is in the Northern hemisphere and it is east of the earth station (i.e ϕ_es<0 & θ_e>0)
∴ Azimuth angle (A_z or ζ)=$180-A^0$
i.e. $A_z=180^0+58.959^0=121.041$
$A_z=121.041^0$
To calculate elevation angle (η)
$η=tan^{-1}\Big(\frac {cos(ψ)-σ}{sin(ψ)} \Big)$
$ψ=cos^{-1}(cos(θ_e ) cos(ϕ_{es} ) )$
$ =cos^{-1}(cos(37^0 ) cos(-45^0 ) )$
$=cos^{-1}(0.56472)$
$∴ψ=55.617^0$
$η=tan^{-1}\Big(\frac {cos(55.617)-0.151}{sin(55.617)}\Big )$
$η=tan^{-1}(0.5013)$
$η=26.625^0$
Slant Range (d):
$d=35786[1+0.4199 (1-cos(ψ) )]^{0.5}Km$
$=35786[1+0.4199(1-cos(55.617) )]^{0.5}Km$
d=35786×1.0875=38919.198Km
∴Slant Range (d)=38919.198K