written 7.3 years ago by | • modified 6.1 years ago |
Mumbai University > EXTC > Sem 8 > Satellite Communication and Networks
Marks: 10M
written 7.3 years ago by | • modified 6.1 years ago |
Mumbai University > EXTC > Sem 8 > Satellite Communication and Networks
Marks: 10M
written 7.3 years ago by | • modified 7.3 years ago |
Given:
Longitude of satellite (ϕs)=350W
brad ford UK station (54°N,2°W)
Latitude of earth station (θe)=(54)0N
Longitude of earth station (ϕe)=20W
To find: Look Angles=?
Slant Range=?
Solution:
Hence
θe=540
ϕe=−20
ϕs=−350
ϕes=ϕe−ϕs
=-2+35
∴ϕ_es=33^0 i.e earth station is to the east of subsatellite point
To calculate Azimuth angle A_z or ζ
A=\Big|tan^-1 \Big(\frac{tan \phi_{es}}{sin (\theta_e)}\Big)\Big|
A=\Big|tan^-1 \Big(\frac{tan (33^0)}{sin(54^0)}\Big|
A=\Big|tan^{-1}(0.8027) \Big|
∴A=38.754^0
Since the satellite is in the Northern hemisphere and it is west of the earth station (i.e ϕ_es>0,θ_e>0)
∴ Azimuth angle (A_z or ζ)=180+A^0
i.e. A_z=180^0+38.754^0
A_z=218.754^0
To calculate elevation angle (η)
η=tan^-1\Big( \frac {cos(ψ)-σ}{sin ψ }\Big)
ψ=cos^-1 (cos(θ_e ) cos(ϕ_{es} ) )
=cos^-1(cos(54^0 ) cos(33^0 ) )
=cos^-1(0.4929)
∴ψ=60.4647^0
η=tan^-1\Big( \frac {cos (60.4647)-0.151}{sin (60.4647)}\Big)
η=tan^{-1}(0.39303)
η=21.456^0
Slant Range (d):
d=35786[1+0.4199{1-cos(ψ) }]^{0.5}Km
=35786[1+0.4199{1-cos(60.4647) }]^{0.5}Km
d=35786×1.101=39411.845Km
∴Slant Range (d)=39411.845Km
Blacksburg USA (37°N, 80°W)
Longitude of satellite (ϕ_s )=35^0 W
Latitude of earth station (θ_e) =37^0N
Longitude of earth station (ϕ_e)=80^0 W
To find:
Look Angles=?
Slant Range=?
Solution:
Hence θ_e=37^0
ϕ_e=-80^0
ϕ_s=-35^0
ϕ_es=ϕ_e-ϕ_s
=-80+35
∴ϕ_{es}=-45^0 i.e earth station is to the west of subsatellite point
To calculate Azimuth angle A_z or ζ
A=\Big|tan^-1 \Big(\frac{ tan ϕ_{es}}{sin(θ_e )} \Big) \Big|
A=\Big|tan^{-1}\Big(\frac{tan (-45^0)}{sin(37^0)}\Big)\Big|
A=|tan^{-1}(-1.6616) |
\therefore A= 58.959^0
Since the satellite is in the Northern hemisphere and it is east of the earth station (i.e ϕ_es<0 & θ_e>0)
∴ Azimuth angle (A_z or ζ)=180-A^0
i.e. A_z=180^0+58.959^0=121.041
A_z=121.041^0
To calculate elevation angle (η)
η=tan^{-1}\Big(\frac {cos(ψ)-σ}{sin(ψ)} \Big)
ψ=cos^{-1}(cos(θ_e ) cos(ϕ_{es} ) )
=cos^{-1}(cos(37^0 ) cos(-45^0 ) )
=cos^{-1}(0.56472)
∴ψ=55.617^0
η=tan^{-1}\Big(\frac {cos(55.617)-0.151}{sin(55.617)}\Big )
η=tan^{-1}(0.5013)
η=26.625^0
Slant Range (d):
d=35786[1+0.4199 (1-cos(ψ) )]^{0.5}Km
=35786[1+0.4199(1-cos(55.617) )]^{0.5}Km
d=35786×1.0875=38919.198Km
∴Slant Range (d)=38919.198K