written 7.4 years ago by |
Applied Mathematics 4 - May 2016
Electronics & Telecomm. (Semester 4)
TOTAL MARKS: 80
TOTAL TIME: 3 HOURS
(1) Question 1 is compulsory.
(2) Attempt any three from the remaining questions.
(3) Assume data if required.
(4) Figures to the right indicate full marks.
1(a) Find the extremal of the functional
$ \displaystyle \int ^1_0[y'^2+12xy]dx $ subject to y(0) = 0 and y(1) = 1.(5 marks)
1(b) Verify Cauchy - Schwartz inequality for u = (1, 2, 1) and v = (3, 0, 4) also find the angle between u & v.(5 marks)
1(c) If &lambda & X are eigen values and eigen vectors of A the prove that $ \dfrac{1}{\lambda} $ and X are eigen values and eigen vectors of A-1, provided A is non singular matrix.(5 marks)
1(d) Evaluate $ \int _C \dfrac{e^{2x}}{(z+1)^4}dz $ where C : |z| = 2(5 marks)
2(a) Find the extremal that minimise the integral $$\displaystyle \int ^{x_1}_{x_0}(16y^2-y^{''2})dx$$(6 marks)
2(b) Find eigrn values and eigen vectors of A3 $$\text {where} A=\begin{bmatrix}
2 & 1 & 1\\
2 & 3 & 2\\
3 & 3 & 4
\end{bmatrix}$$(6 marks)
2(c) Obtain Taylor's and two distinct Laurent's expansion of $ f(z)=\dfrac{z-1}{z^2-2z-3} $ indicating the region of convergence.(8 marks)
3(a) Verify Cayley-Hamilton Theorem for
$ A=\begin{bmatrix}
2 & -1 & 1\\\\
-1 & 2 & -1\\\\
1 & -1 & 2
\end{bmatrix} $ and hence find A-1(6 marks)
3(b) Using Cauchy Residue Theorem, evaluate $$\int ^{\infty}_{-\infty}\dfrac{x^2-x+2}{x^4+10x^2+9}dx$$(6 marks)
3(c) Show that a closed curve 'C' of given fixed length (perimeter) which encloses maximum area is a circle.(8 marks)
4(a) Find an orthonomal basis for the subspace of R3 by appling Gram-Schmidt process where S {(1, 1, 1), (0, 1, 1) (0, 0, 1)}(6 marks)
4(b) Find A50, where $$A=\begin{bmatrix}
2 & 3\\
-3 & -4
\end{bmatrix}$$(6 marks)
4(c) Reduce the following Quadratic form into canonical form & hence find its rank, index, signature and value class where,
Q = 3x12 + 5x22 + 3x32 - 2x1x2 - 2x2x3 + 2x3x1(8 marks)
5(a) Using the Rayleigh- Ritz method, find an approximate solution for the extremal of the functional $ \displaystyle \int ^1_0 \left \{ xy +\dfrac{1}{2}y'^2\right \}dx $ subject to y(0) = y(1) = 0.(6 marks)
5(b) Prove that W = {(x, y)| x = 3y} subspace of R2. Is W1 = {(a, 1, 1)| a in R} subspace of R3?(6 marks)
5(c) Prove that A us diagonizable matrix. Also find diagonal form and transforming matrix where $ A=\begin{bmatrix}
1 & -6 & -4\\\\
0 & 4 & 2\\\\
0 & -6 & -3
\end{bmatrix} $(8 marks)
6(a) By using Cauchy residue Theorem, evaluate $ \displaystyle \int ^{2\pi}_0 \dfrac{\cos^2 \theta}{5+4\cos \theta}d\theta. $(6 marks)
6(b) Evaluate $ \int _C \dfrac{z+4}{z^2+2z+5} dz $ where C : |z+1+i| = 2.(6 marks)
6(c)(i) Determine the function that gives shortest distance between two given points.(5 marks)
6(c)(ii) Express any vector (a,b,c) in R3 as a linear combination of v1, v2, v3 where v1, v2, v3 are in R3.(3 marks)