$L\rightarrow he \rightarrow $ length of element.
$E \rightarrow$Modular of elasticity.
$S\rightarrow $density of material
$A \rightarrow$ cross sectional area .
(i) Natural freoquencies $w_i$ using consistent mass matrix .
The element matrix is given by,
$\frac{AE}{he}$
$\begin{bmatrix}
\ 1 & -1 \\
\ -1 & 1 \\
\end{bmatrix}$
$\begin{Bmatrix}
\ u_1 \\
\ u_2 \\
\end{Bmatrix}= \frac{w^2 \rho Ahe}{6}$
$\begin{bmatrix}
\ 1 & -1 \\
\ -1 & 1 \\
\end{bmatrix}$
$\begin{Bmatrix}
\ u_1 \\
\ u_2 \\
\end{Bmatrix}$
$\begin{bmatrix}
\ \frac{AE}{he} & -\frac{2w^2\rho Ahe}{6} & -\frac{AE}{he} & -\frac{w^2\rho Ahe}{6} \\
\ -\frac{AE}{he} & -\frac{w^2\rho Ahe}{6} & \frac{AE}{he} & -\frac{2w^2\rho Ahe}{6} \\
\end{bmatrix}$
$\begin{Bmatrix}
\ u_1 \\
\ u_2 \\
\end{Bmatrix}= 0$
for not trivial solution
$\hspace{0.6cm}\begin{vmatrix}
\ \frac{AE}{he} & -\frac{2w^2\rho Ahe}{6} & -\frac{AE}{he} & -\frac{w^2\rho Ahe}{6} \\
\ -\frac{AE}{he} & -\frac{w^2\rho Ahe}{6} & \frac{AE}{he} & -\frac{2w^2\rho Ahe}{6} \\
\end{vmatrix}$ = 0
Put the values of A,E, he and $\rho$ and solve above determinant to calculate $w_1$ and $w_2 $
where, w - Natural freoquencies.
(ii) Natural freoquencies $w_i$ using lumped mass matrix :
lumped mass matrix is given by ,
$\hspace{2cm}\frac{\rho Ahe}{2}$
$\begin{bmatrix}
\ 1 & 0 \\
\ 0 & 1 \\
\end{bmatrix}$
$\therefore$ Element matrix eq' becomes,
$\frac{E}{he}$
$\begin{bmatrix}
\ 1 & -1 \\
\ -1 & 1 \\
\end{bmatrix}$
$\begin{Bmatrix}
\ u_1 \\
\ u_2 \\
\end{Bmatrix}= \frac{w^2 \rho Ahe}{2}$
$\begin{bmatrix}
\ 1 & 0 \\
\ 0 & 1 \\
\end{bmatrix}$
$\begin{Bmatrix}
\ u_1 \\
\ u_2 \\
\end{Bmatrix}$
$\hspace{0.6cm}\begin{vmatrix}
\ \frac{E}{he} & -\frac{\rho he}{2}w^2 & -\frac{E}{he} \\
\ -\frac{E}{he} & -\frac{E}{he} & \frac{\rho he}{2}w^2 \\
\end{vmatrix}$
$\begin{Bmatrix}
\ u_1 \\
\ u_2 \\
\end{Bmatrix}= 0$
for non trivial solution
$\hspace{0.6cm}\begin{vmatrix}
\ \frac{E}{he} & -\frac{\rho he}{2}w^2 & -\frac{E}{he} \\
\ -\frac{E}{he} & -\frac{E}{he} & \frac{\rho he}{2}w^2 \\
\end{vmatrix}$ = 0
Put the values of E, $he$ and $\rho$ and solve above determinant to calculate $w_1$ and $w_2 $