written 7.7 years ago by | modified 2.8 years ago by |
Mumbai University > Electronics Engineering > Sem 4 > Discrete Electronic Circuits
Marks: 10M
Year: Dec 2015
written 7.7 years ago by | modified 2.8 years ago by |
Mumbai University > Electronics Engineering > Sem 4 > Discrete Electronic Circuits
Marks: 10M
Year: Dec 2015
written 7.7 years ago by | • modified 7.7 years ago |
Given circuit is Dual Input Balanced Output (DIBO), $r_e$ can be found using Icq so applied input is zero hence given circuit becomes,
$- I_B R_S - VBE - 2I_ER_E - (-VEE) = 0$
But, $I_E = I_C + I_B = \beta I_B + I_B = (1+\beta) I_B$
$-I_BR_S - VBE - 2 (1+\beta)I_BR_E + VEE = 0$
$I_B = \frac{-VBE + VEE}{R_S + 2(1+\beta)R_E}$
$I_B = \frac{-0.7+12}{100 + 2(1+100)2K}$
$I_B = 27.96\mu A$
$Icq = \beta I_B = 100 \times 27.96\mu A$
$Icq = 2.796mA$
Ad (Differential Gain):
Figure 1: AC equivalent circuit
$A_d = -\frac{\beta R_C}{R_S + \beta r_e}$
but, $r_e = \frac{25mV}{Icq} = \frac{25mV}{2.796mA} = 8.94\Omega$
$A_d = -\frac{100 \times 3K}{100+ 100 \times 8.94}$
$A_d = -301.81$
Acm (Common Mode Gain):
$Acm = -\frac{\beta R_C}{R_S + \beta (r_e + 2R_E)}$
$Acm = -\frac{100 \times 3K}{100 + [100 \times (8.94 + (2 \times 2K))]}$
$Acm = - 0.747$
CMRR (Common Mode Rejection Ratio):
$CMRR = \frac{A_d}{Acm}$
$CMRR = \frac{-301.81}{-0.747}$
$CMRR = 403.41$
$CMRR$ in db = $20 log (\frac{A_d}{Acm}) = 20 log (403.41)$
$CMRR$ in db = $52.11db$
Answer: