written 7.7 years ago by | modified 2.8 years ago by |
Mumbai University > Electronics Engineering > Sem 4 > Discrete Electronic Circuits
Marks: 10M
Year: May 2015
written 7.7 years ago by | modified 2.8 years ago by |
Mumbai University > Electronics Engineering > Sem 4 > Discrete Electronic Circuits
Marks: 10M
Year: May 2015
written 7.7 years ago by | • modified 7.7 years ago |
Given circuit is Dual Input Balanced Output (DIBO), to find Q-point applied input is zero hence given circuit becomes,
$- I_B R_S - VBE - 2I_ER_E - (-VEE) = 0$
But, $I_E = I_C + I_B = \beta I_B + I_B = (1+\beta) I_B$
$-I_BR_S - VBE - 2 (1+\beta)I_BR_E + VEE = 0$
$I_B = \frac{-VBE + VEE}{R_S + 2(1+\beta)R_E}$
$I_B = \frac{-0.7+12}{500 + 2(1+100)5K}$
$I_B = 11.18\mu A$
$Icq = \beta I_B = 100 \times 11.18\mu A$
$Icq = 1.118mA$
Apply KVL from VCC to - VEE,
$VCEq = VCC - Icq R_C - 2 I_ER_E - (-VEE)$
Since, $I_E = (1+\beta)I_B = (1+100)11.18\mu A = 1.12mA$
$VCEq = 12 - (1.118m \times1.2K) -(2 \times 1.12m \times 5K) +12$
$VCEq = 11.45V$
Hence Q point of differential amplifier [11.45V, 1.118mA]
Ad (Differential Gain):
Figure 1: AC equivalent circuit
$A_d = -\frac{\beta R_C}{R_S + \beta r_e}$
but, $r_e = \frac{25mV}{Icq} = \frac{25mV}{1.118mA} = 22.36\Omega$
$A_d = -\frac{100 \times 1.2K}{500+ 100 \times 22.36}$
$A_d = -43.85$
Acm (Common Mode Gain):
$Acm = -\frac{\beta R_C}{R_S + \beta (r_e + 2R_E)}$
$Acm = -\frac{100 \times 1.2K}{500 + [100 \times (22.36 + (2 \times 5K))]}$
$Acm = - 0.119$
Answer: