written 7.7 years ago by | modified 2.9 years ago by |
Mumbai University > Electronics Engineering > Sem 4 > Discrete Electronic Circuits
Marks: 10M
Year: May 2015
written 7.7 years ago by | modified 2.9 years ago by |
Mumbai University > Electronics Engineering > Sem 4 > Discrete Electronic Circuits
Marks: 10M
Year: May 2015
written 7.7 years ago by | • modified 7.7 years ago |
AC equivalent circuit:
$R_i (Input Resistance):$
$R_i = R_1 || R_2$
$R_i = 10M || 6.8M $
$R_i = 4.04M\Omega$
$A_V(Voltage Gain):$
$A_V = - gm (R_D || r_d)$
Since, $r_d$ is not given $A_V = - gm(R_D)$
$gm = 2K_n [VGSq - V_T]$......(1)
$IDS = k_n(VGS - V_T)^2$
$k_n = \frac{IDS(ON)}{[VGS(ON) - V_T]^2} = \frac{5mA}{[6-3]^2}$
$k_n = 0.55mA/V^2$
Hence, $IDS = 0.55mA/V^2 \times (VGS - 3)^2$ .........(2)
But voltage divider biasing equation is,
$VR_2 - VGS - IDS \times R_S = 0$
Hence, $VGS = VR_2 - IDS \times 0.75K\Omega$
$VR_2 = \frac{VDD \times R_2}{R_1 + R_2} = \frac{24 \times 6.8M\Omega}{10M\Omega + 6.8M\Omega}$
$VR_2 = 9.71V$
Hence, $VGS = 9.71 - IDS \times 0.75K\Omega$ ........(3)
Put equation (3) in (2),
$IDS = 0.55mA/V^2 \times (9.71 - IDS \times 0.75K\Omega - 3)^2$
$IDS = 0.55m \times (6.71 - IDS \times 0.75K\Omega)^2$
$IDS = 4.94mA or 16.15mA$
IDS = 4.94mA | IDS = 16.15mA |
---|---|
$VGS = 9.71 - IDS \times 0.75K\Omega$ | $VGS = 9.71 - IDS \times 0.75K\Omega$ |
$VGS = 6.005V \gt VGS(T)$ | $VGS = -2.4025 \lt VGS(T)$ |
Select IDS with which VGS is greater than or equal to $VGS(T)$
Hence, $IDSq = 4.94mA$
with $IDSq = 4.94mA$ in equation (3),
$VGSq = 6.005V$
Substitute value of VGSq in equation (1)
$gm = 2K_n [VGSq - V_T] = 2 \times 0.55m [6.005 - 3]$
$gm = 3.305mA$
$A_V = -gm(R_D) = -3.305m \times 2.2K = -7.27$
$R_O (Output Resistance):$
$R_O = R_D || r_d$
Since, $r_d$ is not given, $R_O = R_D$
$R_O = 2.2K$
$R_O = 2.2K\Omega$
Answers: